def test_two_triangles_without_edges(two_triangles_with_depths): grid = two_triangles_with_depths # This will set the _edges to None, but it will be rebuild grid.edges = None fname = '2_triangles_without_edges.nc' with chdir(test_files): grid.save_as_netcdf(fname) ug = UGrid.from_ncfile(fname, load_data=True) os.remove(fname) assert ug.nodes.shape == (4, 2) assert ug.nodes.shape == grid.nodes.shape # FIXME: Not ideal to pull specific values out, but how else to test? assert np.array_equal(ug.nodes[0, :], (0.1, 0.1)) assert np.array_equal(ug.nodes[-1, :], (3.1, 2.1)) assert np.array_equal(ug.nodes, grid.nodes) assert ug.faces.shape == grid.faces.shape # the edges rebuild from faces assert ug._edges is None ug.build_edges() assert ug.edges is not None depths = find_depths(ug) assert depths.data.shape == (4, ) assert depths.data[0] == 1 assert depths.attributes['units'] == 'unknown'
def test_with_just_nodes_and_depths(two_triangles): expected = two_triangles del expected.faces del expected.edges depth = UVar( 'depth', 'node', np.array([1.0, 2.0, 3.0, 4.0]), { 'units': 'm', 'positive': 'down', 'standard_name': 'sea_floor_depth_below_geoid' }) expected.add_data(depth) fname = '2_triangles_depth.nc' with chdir(test_files): expected.save_as_netcdf(fname) grid = UGrid.from_ncfile(fname, load_data=True) os.remove(fname) assert grid.faces is None assert grid.edges is None assert np.array_equal(expected.nodes, grid.nodes) assert np.array_equal(expected.data['depth'].data, grid.data['depth'].data) assert expected.data['depth'].attributes == grid.data['depth'].attributes
def test_without_faces(two_triangles): expected = two_triangles del expected.faces assert expected.faces is None fname = '2_triangles.nc' with chdir(test_files): expected.save_as_netcdf(fname) grid = UGrid.from_ncfile(fname) os.remove(fname) assert grid.faces is None assert np.array_equal(expected.faces, grid.faces) assert np.array_equal(expected.edges, grid.edges)
def test_with_faces(two_triangles): """ Test with faces, edges, but no `face_coordinates` or `edge_coordinates`. """ expected = two_triangles fname = '2_triangles.nc' with chdir(test_files): expected.save_as_netcdf(fname) grid = UGrid.from_ncfile(fname) os.remove(fname) assert np.array_equal(expected.nodes, grid.nodes) assert np.array_equal(expected.faces, grid.faces) assert np.array_equal(expected.edges, grid.edges)
def test_21_triangles(twenty_one_triangles_with_depths): grid = twenty_one_triangles_with_depths fname = '21_triangles.nc' with chdir(test_files): grid.save_as_netcdf(fname) ug = UGrid.from_ncfile(fname, load_data=True) os.remove(fname) assert ug.nodes.shape == grid.nodes.shape # FIXME: Not ideal to pull specific values out, but how else to test? assert np.array_equal(ug.nodes, grid.nodes) depths = find_depths(ug) assert depths.data.shape == (20, ) assert depths.data[0] == 1 assert depths.attributes['units'] == 'unknown'
def load_from_varnames(filename, names_mapping, attribute_check=None): """ Load a UGrid from a netcdf file where the roles are defined by the names of the variables. :param filename: names of the file to load (or OPeNDAP URL). :param names_mapping: dict that maps the variable names to UGrid components :param attribute_check=None: list of global attributes that are expected :type attribute_check: list of tuples to check. Example: [('grid_type','triangular'),] will check if the grid_type attribute is set to "triangular" The names_mapping dict has to contain at least: 'nodes_lon', 'nodes_lat' Optionally (and mostly required), it can contain: face_face_connectivity', 'face_coordinates_lon', 'face_coordinates_lat', and 'faces' """ ug = UGrid() attribute_check = {} if attribute_check is None else attribute_check nc = netCDF4.Dataset(filename) # Check for the specified attributes. for name, value in attribute_check: if nc.getncattr(name).lower() != value: raise ValueError('This does not appear to be a valid file:\n' 'It does not have the "{}"="{}"' 'global attribute set'.format(name, value)) # Nodes. lon = nc.variables[names_mapping['nodes_lon']] lat = nc.variables[names_mapping['nodes_lat']] num_nodes = lon.size ug.nodes = np.zeros((num_nodes, 2), dtype=lon.dtype) ug.nodes[:, 0] = lon[:] ug.nodes[:, 1] = lat[:] # Faces. faces = nc.variables[names_mapping['faces']] # FIXME: This logic assumes there are more than three triangles. if faces.shape[0] <= faces.shape[1]: # Fortran order. faces = faces[:].T else: faces = faces[:] # One-indexed? if faces.min() == 1: one_indexed = True else: one_indexed = False if one_indexed: faces -= 1 ug.faces = faces # Connectivity (optional). if 'face_face_connectivity' in names_mapping: face_face_connectivity = nc.variables[names_mapping['face_face_connectivity']] # noqa # FIXME: This logic assumes there are more than three triangles. if face_face_connectivity.shape[0] <= face_face_connectivity.shape[1]: # Fortran order. face_face_connectivity = face_face_connectivity[:].T else: face_face_connectivity = face_face_connectivity[:] if one_indexed: face_face_connectivity -= 1 ug.face_face_connectivity = face_face_connectivity # Center (optional). if ('face_coordinates_lon' in names_mapping and 'face_coordinates_lat' in names_mapping): ug.face_coordinates = np.zeros((len(ug.faces), 2), dtype=lon.dtype) ug.face_coordinates[:, 0] = nc.variables[names_mapping['face_coordinates_lon']][:] # noqa ug.face_coordinates[:, 1] = nc.variables[names_mapping['face_coordinates_lat']][:] # noqa # Boundaries (optional). if 'boundaries' in names_mapping: # FIXME: this one is weird and non-conforming! # Ignoring the second two fields. What are they? boundaries = nc.variables[names_mapping['boundaries']][:, :2] if one_indexed: boundaries -= 1 ug.boundaries = boundaries return ug
def __init__(self, filename, *args, **kwargs): self.filename = os.path.expanduser(filename) dataset = netCDF4.Dataset(self.filename, mode="r") self.dataset = dataset meshes = {} for meshname in find_mesh_names(self.dataset): mesh = UGrid() load_grid_from_nc_dataset(dataset, mesh, mesh_name=meshname) meshes[meshname] = mesh self.meshes = meshes # Generate list of excluded variable names. exclude_vars = list(meshes.keys()) for mesh in meshes.values(): mesh_var = dataset.variables[mesh.mesh_name] for attr in mesh_var.ncattrs(): if attr in _UGRID_LINK_PROPERTIES: exclude_vars.extend(mesh_var.getncattr(attr).split()) # Identify possible mesh dimensions and make a map of them. meshdims_map = {} # Maps {dimension-name: (mesh, mesh-location)} for mesh in meshes.values(): mesh_var = dataset.variables[mesh.mesh_name] if mesh.faces is not None: # Work out name of faces dimension and record it. if "face_dimension" in mesh_var.ncattrs(): faces_dim_name = mesh_var.getncattr("face_dimension") else: # Assume default dimension ordering, and get the dim name # from dims of a non-optional connectivity variable. faces_varname = mesh_var.face_node_connectivity faces_var = dataset.variables[faces_varname] faces_dim_name = faces_var.dimensions[0] meshdims_map[faces_dim_name] = (mesh, "face") if mesh.edges is not None: # Work out name of edges dimension and record it. if "edge_dimension" in mesh_var.ncattrs(): edges_dim_name = mesh_var.getncattr("edge_dimension") else: # Assume default dimension ordering, and get the dim name # from dims of a non-optional connectivity variable. edges_varname = mesh_var.edge_node_connectivity edges_var = dataset.variables[edges_varname] edges_dim_name = edges_var.dimensions[0] meshdims_map[edges_dim_name] = (mesh, "edge") if mesh.nodes is not None: # Work out name of nodes dimension and record it. # Get it from a non-optional coordinate variable. nodes_varname = mesh_var.node_coordinates.split()[0] nodes_var = dataset.variables[nodes_varname] nodes_dim_name = nodes_var.dimensions[0] meshdims_map[nodes_dim_name] = (mesh, "node") self.meshdims_map = meshdims_map # Initialise the main CF analysis operation, but make it ignore the # UGRID-specific variables. super().__init__(self.dataset, *args, exclude_var_names=exclude_vars, **kwargs)