Пример #1
0
def mte_and_cof_int_par(rslt, init_dict, data, college_years):
    """
    This function returns the parametric MTE divided by the number
    of college years, which represents the returns per YEAR of
    post-secondary schooling.
    90 percent confidence intervals are computed analytically.

    Parameters
    ----------
    rslt: dict
        Result dictionary containing parameters for the estimation
        process.
    init_dict: dict
        Initialization dictionary containing parameters for the
        estimation process.
    data: pandas.DataFrame
        Data set containing the observables (explanatory and outcome variables)
        analyzed in the generalized Roy framework.
    college_years: int, default is 4
        Average duration of college degree. The MTE plotted will thus
        refer to the returns per one year of college education.
    """
    # Define quantiles of u_D (unobserved resistance to treatment)
    quantiles = [0.0001] + np.arange(0.01, 1.0, 0.01).tolist() + [0.9999]

    # Calculate the MTE and confidence intervals
    mte = calculate_mte(rslt, data, quantiles)
    mte = [i / college_years for i in mte]
    con_u, con_d = calculate_cof_int(rslt, init_dict, data, mte, quantiles)

    return quantiles, mte, con_u, con_d
Пример #2
0
def plot_est_mte(rslt, file):
    """This function calculates the marginal treatment effect for different quartiles of the
    unobservable V. ased on the calculation results."""

    init_dict = read(file)
    data_frame = pd.read_pickle(init_dict['ESTIMATION']['file'])

    # Define the Quantiles and read in the original results
    quantiles = [0.0001] + np.arange(0.01, 1., 0.01).tolist() + [0.9999]
    mte_ = json.load(open('data/mte_original.json', 'r'))
    mte_original = mte_[1]
    mte_original_d = mte_[0]
    mte_original_u = mte_[2]

    # Calculate the MTE and confidence intervals
    mte = calculate_mte(rslt, init_dict, data_frame, quantiles)
    mte = [i / 4 for i in mte]
    mte_up, mte_d = calculate_cof_int(rslt, init_dict, data_frame, mte,
                                      quantiles)

    # Plot both curves
    ax = plt.figure(figsize=(17.5, 10)).add_subplot(111)

    ax.set_ylabel(r"$B^{MTE}$", fontsize=24)
    ax.set_xlabel("$u_D$", fontsize=24)
    ax.tick_params(axis='both', which='major', labelsize=18)
    ax.plot(quantiles, mte, label='grmpy $B^{MTE}$', color='blue', linewidth=4)
    ax.plot(quantiles, mte_up, color='blue', linestyle=':', linewidth=3)
    ax.plot(quantiles, mte_d, color='blue', linestyle=':', linewidth=3)
    ax.plot(quantiles,
            mte_original,
            label='original$B^{MTE}$',
            color='orange',
            linewidth=4)
    ax.plot(quantiles,
            mte_original_d,
            color='orange',
            linestyle=':',
            linewidth=3)
    ax.plot(quantiles,
            mte_original_u,
            color='orange',
            linestyle=':',
            linewidth=3)
    ax.set_ylim([-0.41, 0.51])
    ax.set_xlim([-0.005, 1.005])

    blue_patch = mpatches.Patch(color='blue', label='original $B^{MTE}$')
    orange_patch = mpatches.Patch(color='orange', label='grmpy $B^{MTE}$')
    plt.legend(handles=[blue_patch, orange_patch], prop={'size': 16})
    plt.show()

    return mte
Пример #3
0
def parametric_mte(rslt, file):
    """This function calculates the marginal treatment effect for different quartiles
    of the unobservable V based on the calculation results."""
    init_dict = read(file)
    data_frame = pd.read_pickle(init_dict["ESTIMATION"]["file"])

    # Define quantiles and read in the original results
    quantiles = [0.0001] + np.arange(0.01, 1.0, 0.01).tolist() + [0.9999]

    # Calculate the MTE and confidence intervals
    mte = calculate_mte(rslt, data_frame, quantiles)
    mte_up, mte_d = calculate_cof_int(rslt, init_dict, data_frame, mte, quantiles)

    return quantiles, mte, mte_up, mte_d
Пример #4
0
def mte_and_cof_int_par(rslt, init_dict, data, college_years):
    """This function returns the parametric MTE divided by the number
     of college years, which represents the returns per YEAR of
     post-secondary schooling.
     90 percent confidence intervals are computed analytically.
    """
    # Define quantiles of u_D (unobserved resistance to treatment)
    quantiles = [0.0001] + np.arange(0.01, 1.0, 0.01).tolist() + [0.9999]

    # Calculate the MTE and confidence intervals
    mte = calculate_mte(rslt, data, quantiles)
    mte = [i / college_years for i in mte]
    con_u, con_d = calculate_cof_int(rslt, init_dict, data, mte, quantiles)

    return quantiles, mte, con_u, con_d
Пример #5
0
def plot_est_mte(rslt, init_dict, data_frame):
    """This function calculates the marginal treatment effect for different quartiles of the
    unobservable V. ased on the calculation results."""

    # Define the Quantiles and read in the original results
    quantiles = [0.0001] + np.arange(0.01, 1.0, 0.01).tolist() + [0.9999]
    mte_ = json.load(open("mte_original.json"))
    mte_original = mte_[1]
    mte_original_d = mte_[0]
    mte_original_u = mte_[2]

    # Calculate the MTE and confidence intervals
    mte = calculate_mte(rslt, data_frame, quantiles)
    mte = [i / 4 for i in mte]
    mte_up, mte_d = calculate_cof_int(rslt, init_dict, data_frame, mte,
                                      quantiles)

    # Plot both curves
    ax = plt.figure(figsize=(14, 6))

    ax1 = ax.add_subplot(121)

    ax1.set_ylabel(r"$B^{MTE}$")
    ax1.set_xlabel("$u_D$")
    (l1, ) = ax1.plot(quantiles, mte, color="blue")
    ax1.plot(quantiles, mte_up, color="blue", linestyle=":")
    ax1.plot(quantiles, mte_d, color="blue", linestyle=":")

    ax1.set_ylim([-0.4, 0.5])

    ax2 = ax.add_subplot(122)

    ax2.set_ylabel(r"$B^{MTE}$")
    ax2.set_xlabel("$u_D$")

    (l4, ) = ax2.plot(quantiles, mte_original, color="orange")
    ax2.plot(quantiles, mte_original_d, color="orange", linestyle=":")
    ax2.plot(quantiles, mte_original_u, color="orange", linestyle=":")
    ax2.set_ylim([-0.4, 0.5])

    plt.legend([l1, l4], ["grmpy $B^{MTE}$", "original $B^{MTE}$"],
               prop={"size": 18})

    plt.tight_layout()

    plt.savefig("fig-marginal-benefit-parametric-replication.png", dpi=300)

    return mte
Пример #6
0
def plot_est_mte(rslt, init_dict, data_frame):
    """This function calculates the marginal treatment effect for different quartiles of the
    unobservable V. ased on the calculation results."""

    # Define the Quantiles and read in the original results
    quantiles = [0.0001] + np.arange(0.01, 1., 0.01).tolist() + [0.9999]
    mte_ = json.load(open('mte_original.json', 'r'))
    mte_original = mte_[1]
    mte_original_d = mte_[0]
    mte_original_u = mte_[2]

    # Calculate the MTE and confidence intervals
    mte = calculate_mte(rslt, init_dict, data_frame, quantiles)
    mte = [i / 4 for i in mte]
    mte_up, mte_d = calculate_cof_int(rslt, init_dict, data_frame, mte,
                                      quantiles)
    # Plot both curveslscpu | grep MHz

    ax = plt.figure().add_subplot(111)

    ax.set_ylabel(r"$B^{MTE}$")
    ax.set_xlabel("$u_S$")
    ax.plot(quantiles, mte, label='grmpy MTE', color='blue')
    ax.plot(quantiles, mte_up, color='blue', linestyle=':')
    ax.plot(quantiles, mte_d, color='blue', linestyle=':')
    ax.plot(quantiles, mte_original, label='original MTE', color='red')
    ax.plot(quantiles, mte_original_d, color='red', linestyle=':')
    ax.plot(quantiles, mte_original_u, color='red', linestyle=':')

    ax.set_ylim([-0.4, 0.5])

    plt.legend()

    plt.tight_layout()
    plt.savefig('fig-marginal-benefit-parametric-replication.png')
    return mte