def preconstrain(self, x): source = self.get_source(x) if any(self.distance_min > source.distance_to(t) for t in self.targets): raise Forbidden() return num.array(x, dtype=num.float)
def preconstrain(self, x): d = self.get_parameter_dict(x) m6 = num.array([d.rmnn, d.rmee, d.rmdd, d.rmne, d.rmnd, d.rmed], dtype=num.float) m9 = mtm.symmat6(*m6) if self.mt_type == 'deviatoric': trace_m = num.trace(m9) m_iso = num.diag([trace_m / 3., trace_m / 3., trace_m / 3.]) m9 -= m_iso elif self.mt_type == 'dc': mt = mtm.MomentTensor(m=m9) m9 = mt.standard_decomposition()[1][2] m0_unscaled = math.sqrt(num.sum(m9.A**2)) / math.sqrt(2.) m9 /= m0_unscaled m6 = mtm.to6(m9) d.rmnn, d.rmee, d.rmdd, d.rmne, d.rmnd, d.rmed = m6 x = self.get_parameter_array(d) source = self.get_source(x) for t in self.targets: if (self.distance_min > num.asarray(t.distance_to(source))).any(): raise Forbidden() return x