Пример #1
0
 def test_fixed_base_group(self):
     g1 = Permutation.read_cycle_form([[1,2,3,4,5,6]], 6)
     g2 = Permutation.read_cycle_form([[1,2]], 6)
     h1 = Permutation.read_cycle_form([[3,4,5,6]], 6)
     h2 = Permutation.read_cycle_form([[3,4]], 6)
     G = PermGroup.fixed_base_group([g1, g2], [5,4])
     H = PermGroup.fixed_base_group([h1, h2], [1,2,3,4,5,6])
     N = PermGroup.fixed_base_group([g1,h1], [])
     self.assertEqual(G.base[:2], [5,4])
     self.assertEqual(H.base[:4], [1,2,3,4])
     self.contains_membership_test(G, H)
Пример #2
0
def naive_min_gen(original_group, ordering):
    eles = original_group._list_elements(key = ordering_to_perm_key(ordering))
    cur_gens = [eles[1]]
    cur_G = Group.fixed_base_group(cur_gens, ordering)
    for ele in eles:
        if ele not in cur_G:
            cur_gens.append(ele)
            cur_G = Group.fixed_base_group(cur_gens, ordering)
            if cur_G.order() == G.order():
                break
    return cur_gens
Пример #3
0
 def test_contains(self):
     cf = lambda x:Permutation.read_cycle_form(x, 6)
     g1 = cf([[1,2,3,4,5,6]])
     g2 = cf([[1,2]])
     h1 = cf([[3,4,5,6]])
     h2 = cf([[3,4]])
     a1 = cf([[3,1],[6,4]])
     a2 = cf([[1,6,4]])
     G = PermGroup([g1, g2])
     H = PermGroup([h1, h2])
     self.contains_membership_test(G, H)
     S6 = PermGroup.fixed_base_group([g1,g2], [5,2,1,3,4,6])
     A4 = PermGroup.fixed_base_group([a1,a2], [3,1,2,5,6,4])
     self.contains_membership_test(S6, A4)
Пример #4
0
 def test_pre_post_element(self):
     cf = Permutation.read_cycle_form
     a = cf([[2,3],[4,6],[5,8],[9,11]], 13)
     b = cf([[1,2,4,7,9,3,5,6,8,10,11,12,13]], 13)
     G = PermGroup.fixed_base_group([a,b], [1,3])
     pre = [1,3]
     post = [9,3]
     self.pre_post_works(pre, post, G)
Пример #5
0
 def test_base_image_member(self):
     h1 = Permutation.read_cycle_form([[3,4,5,6,7]], 7)
     h2 = Permutation.read_cycle_form([[3,4]], 7)
     H = PermGroup.fixed_base_group([h1, h2], [3,4,5,6])
     self.assertEqual(H.base, [3,4,5,6])
     image1 = [1,2,3,4]
     image2 = [5,3,4,6]
     self.assertTrue(H.base_image_member(image1) is None)
     self.assertEqual(H.base_image_member(image2), Permutation.read_cycle_form([[3,5,4]],7))   
Пример #6
0
 def double_coset_1(self, base, image, gens, key = None):
     #base change (for now just recompute base but should do the proper algorithm)
     if len(image) == 0 or len(gens) == 0:
         return True
     G = PermGroup.fixed_base_group(gens, image[:-1])
     orb = G.orbit(image[-1], stab_level = len(base) - 1, key = key)
     #print("Orbit of {} is {} in {}".format(image[-1], orb, G._list_elements()))
     if image[-1] == orb[0]:
         return True
     return False    
Пример #7
0
 def test_orbit(self):
     g1 = Permutation.read_cycle_form([[1,2,3,4]], 4)
     g2 = Permutation.read_cycle_form([[1,2]], 4)
     base = [3,4,1]
     reverse_priority = [3,4,1,2]
     G = PermGroup.fixed_base_group([g1, g2], base)
     self.assertEqual(G.orbit(1), [1,2,3,4])
     self.assertEqual(G.orbit(1, stab_level = 0), [1,2,3,4])
     self.assertEqual(G.orbit(1, stab_level = 1), [1,2,4])
     self.assertEqual(G.orbit(1, stab_level = 2), [1,2])
     self.assertEqual(G.orbit(1, stab_level = 3), [1])
     self.assertEqual(G.orbit(1, key = lambda x : reverse_priority[x - 1]), [3,4,1,2])
Пример #8
0
 def test_pre_post_element_A4(self):
     cf = Permutation.read_cycle_form
     a = cf([[1,2],[3,4]], 5)
     b = cf([[1,2,3]], 5)
     G = PermGroup.fixed_base_group([a,b], [5,4,3,2,1])
     pre = [5,4]
     post = [4,3]
     ele = G.prefix_postfix_image_member(pre,post)
     self.assertTrue(ele is None)
     pre = [5,4,3]
     post = [5,2,1]
     self.pre_post_works(pre, post, G)
     ele = G.prefix_postfix_image_member(pre,post)
     self.assertEqual(cf([[1,3],[2,4]],5),ele)
Пример #9
0
def schreier_sims0():
    from permutation import Permutation
    from refinement import SubgroupFamily, PartitionStabaliserFamily, Refinement
    from partition import Partition
    from group import PermGroup
    from leon_search import PartitionBacktrackWorkhorse as PBW
    from coset_property import CosetProperty, SubgroupProperty, PartitionStabaliserProperty

    cf = Permutation.read_cycle_form
    a = cf([[1, 2]], 4)
    b = cf([[1, 2, 3, 4]], 4)
    G = PermGroup.fixed_base_group([a, b], [1, 2, 3, 4])
    base = G.base
    graphs = G.schreier_graphs
    gens = G.chain_generators
    print("Base is: {}".format(base))
    for i in range(len(graphs)):
        print("Generators and schreier graph for G[{}]:".format(i + 1))
        print(gens[i])
        print(graphs[i])
Пример #10
0
if __name__ == '__main__':
    from _example_path_tools import add_path_examples
    add_path_examples()
    
from permutation import Permutation
from group import PermGroup
from schreier_sims import _coset_rep_inverse as rep

cf = lambda x: Permutation.read_cycle_form(x,5)
a = cf([[2,3,4]])
b = cf([[1,2,3,4,5]])
A5 = PermGroup.fixed_base_group([a,b],[1,2,3])
print(A5.base)
print(A5.strong_generators)
for sg in A5.schreier_graphs:
    for image in range(1, 6):
        print("{}: {}".format(image, rep(image, sg, A5.identity)))
Пример #11
0
 def test_orbits(self):
     cf = Permutation.read_cycle_form
     a = cf([[1, 2], [6,7]],7)
     b = cf([[1,2,3,4], [6,7]], 7)
     G=PermGroup.fixed_base_group([a,b], [1,2,3])
     self.assertEqual(sorted(G.orbits()), [[1,2,3,4],[5],[6,7]])
Пример #12
0
from ordering import ordering_to_key, ordering_to_perm_key

#Set up group generators
cf = Permutation.read_cycle_form
a = cf([[2,3],[4,6],[5,8],[9,11]], 13)
b = cf([[1,2,4,7,9,3,5,6,8,10,11,12,13]], 13)

#Define ordering of base elements
fix = [1,3,5,9,7,11,2,12,4,6,8,10,13]

#Define corresponding key functions on numbers and perms based on base element ordering
key_single = ordering_to_key(fix)
key_perm = ordering_to_perm_key(fix)

#Construct group
G = Group.fixed_base_group([a,b],fix)

#Find all elements in order
#Print the base and stab orbits of G.
print(G.base)
level_orbits = []
for level in range(len(G.base)):
    to_check = sorted(G.orbit(G.base[level],level), key = key_single)
    level_orbits.append(to_check)
    print(to_check)

#Set up the modulo values for a naive traversal.
mods = [len(orbit) for orbit in level_orbits]
def inc(count, resets):#incrementor function for the naive traversal
    sig = len(count) - 1
    while (count[sig] + 1) % resets[sig] == 0: