Пример #1
0
def get_rectangular_cavity_mode(E_0, mode_indices):  # noqa: N803
    """A rectangular TM cavity mode for a rectangle / cube
    with one corner at the origin and the other at (1,1[,1])."""
    dims = len(mode_indices)
    if dims != 2 and dims != 3:
        raise ValueError("Improper mode_indices dimensions")
    import numpy

    factors = [n * numpy.pi for n in mode_indices]

    kx, ky = factors[0:2]
    if dims == 3:
        kz = factors[2]

    omega = numpy.sqrt(sum(f**2 for f in factors))

    nodes = sym.nodes(dims)
    x = nodes[0]
    y = nodes[1]
    if dims == 3:
        z = nodes[2]

    sx = sym.sin(kx * x)
    cx = sym.cos(kx * x)
    sy = sym.sin(ky * y)
    cy = sym.cos(ky * y)
    if dims == 3:
        sz = sym.sin(kz * z)
        cz = sym.cos(kz * z)

    if dims == 2:
        tfac = sym.ScalarVariable("t") * omega

        result = flat_obj_array(
            0,
            0,
            sym.sin(kx * x) * sym.sin(ky * y) * sym.cos(tfac),  # ez
            -ky * sym.sin(kx * x) * sym.cos(ky * y) * sym.sin(tfac) /
            omega,  # hx
            kx * sym.cos(kx * x) * sym.sin(ky * y) * sym.sin(tfac) /
            omega,  # hy
            0,
        )
    else:
        tdep = sym.exp(-1j * omega * sym.ScalarVariable("t"))

        gamma_squared = ky**2 + kx**2
        result = flat_obj_array(
            -kx * kz * E_0 * cx * sy * sz * tdep / gamma_squared,  # ex
            -ky * kz * E_0 * sx * cy * sz * tdep / gamma_squared,  # ey
            E_0 * sx * sy * cz * tdep,  # ez
            -1j * omega * ky * E_0 * sx * cy * cz * tdep / gamma_squared,  # hx
            1j * omega * kx * E_0 * cx * sy * cz * tdep / gamma_squared,
            0,
        )

    return result
def simple_mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    from meshmode.mesh import BTAG_ALL

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()

    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-1, ) * 2,
                                          b=(1, ) * 2,
                                          nelements_per_axis=(2, ) * 2)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DiscretizationCollection(actx,
                                         local_mesh,
                                         order=5,
                                         mpi_communicator=comm)

    sym_x = sym.nodes(local_mesh.dim)
    myfunc_symb = sym.sin(np.dot(sym_x, [2, 3]))
    myfunc = bind(vol_discr, myfunc_symb)(actx)

    sym_all_faces_func = sym.cse(
        sym.project("vol", "all_faces")(sym.var("myfunc")))
    sym_int_faces_func = sym.cse(
        sym.project("vol", "int_faces")(sym.var("myfunc")))
    sym_bdry_faces_func = sym.cse(
        sym.project(BTAG_ALL,
                    "all_faces")(sym.project("vol",
                                             BTAG_ALL)(sym.var("myfunc"))))

    bound_face_swap = bind(
        vol_discr,
        sym.project("int_faces", "all_faces")(
            sym.OppositeInteriorFaceSwap("int_faces")(sym_int_faces_func)) -
        (sym_all_faces_func - sym_bdry_faces_func))

    hopefully_zero = bound_face_swap(myfunc=myfunc)
    error = actx.np.linalg.norm(hopefully_zero, ord=np.inf)

    print(__file__)
    with np.printoptions(threshold=100000000, suppress=True):
        logger.debug(hopefully_zero)
    logger.info("error: %.5e", error)

    assert error < 1e-14
Пример #3
0
def simple_mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()

    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-1, ) * 2,
                                          b=(1, ) * 2,
                                          n=(3, ) * 2)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DGDiscretizationWithBoundaries(cl_ctx,
                                               local_mesh,
                                               order=5,
                                               mpi_communicator=comm)

    sym_x = sym.nodes(local_mesh.dim)
    myfunc_symb = sym.sin(np.dot(sym_x, [2, 3]))
    myfunc = bind(vol_discr, myfunc_symb)(queue)

    sym_all_faces_func = sym.cse(
        sym.interp("vol", "all_faces")(sym.var("myfunc")))
    sym_int_faces_func = sym.cse(
        sym.interp("vol", "int_faces")(sym.var("myfunc")))
    sym_bdry_faces_func = sym.cse(
        sym.interp(sym.BTAG_ALL,
                   "all_faces")(sym.interp("vol",
                                           sym.BTAG_ALL)(sym.var("myfunc"))))

    bound_face_swap = bind(
        vol_discr,
        sym.interp("int_faces", "all_faces")(
            sym.OppositeInteriorFaceSwap("int_faces")(sym_int_faces_func)) -
        (sym_all_faces_func - sym_bdry_faces_func))

    # print(bound_face_swap)
    # 1/0

    hopefully_zero = bound_face_swap(queue, myfunc=myfunc)
    import numpy.linalg as la
    error = la.norm(hopefully_zero.get())

    np.set_printoptions(threshold=100000000, suppress=True)
    print(hopefully_zero)
    print(error)

    assert error < 1e-14
Пример #4
0
def get_strong_wave_op_with_discr(cl_ctx, dims=2, order=4):
    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims,
                                      b=(0.5, ) * dims,
                                      n=(16, ) * dims)

    logger.debug("%d elements", mesh.nelements)

    discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)

    source_center = np.array([0.1, 0.22, 0.33])[:dims]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(
        -0.1,
        dims,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    op.check_bc_coverage(mesh)

    return (op.sym_operator(), discr)
Пример #5
0
def _get_source_term(dims):
    source_center = np.array([0.1, 0.22, 0.33])[:dims]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(dims)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    return (sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2))
Пример #6
0
def get_strong_wave_op_with_discr_direct(cl_ctx, dims=2, order=4):
    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims,
                                      b=(0.5, ) * dims,
                                      n=(16, ) * dims)

    logger.debug("%d elements", mesh.nelements)

    discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)

    source_center = np.array([0.1, 0.22, 0.33])[:dims]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from meshmode.mesh import BTAG_ALL

    c = -0.1
    sign = -1

    w = sym.make_sym_array("w", dims + 1)
    u = w[0]
    v = w[1:]

    source_f = (
        sym.sin(source_omega * sym_t) *
        sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                source_width**2))

    rad_normal = sym.normal(BTAG_ALL, dims)

    rad_u = sym.cse(sym.interp("vol", BTAG_ALL)(u))
    rad_v = sym.cse(sym.interp("vol", BTAG_ALL)(v))

    rad_bc = sym.cse(
        sym.join_fields(
            0.5 * (rad_u - sign * np.dot(rad_normal, rad_v)),
            0.5 * rad_normal * (np.dot(rad_normal, rad_v) - sign * rad_u)),
        "rad_bc")

    sym_operator = (
        -sym.join_fields(-c * np.dot(sym.nabla(dims), v) - source_f, -c *
                         (sym.nabla(dims) * u)) + sym.InverseMassOperator()(
                             sym.FaceMassOperator()
                             (dg_flux(c, sym.int_tpair(w)) +
                              dg_flux(c, sym.bv_tpair(BTAG_ALL, w, rad_bc)))))

    return (sym_operator, discr)
Пример #7
0
def test_tri_diff_mat(ctx_factory, dim, order=4):
    """Check differentiation matrix along the coordinate axes on a disk

    Uses sines as the function to differentiate.
    """

    cl_ctx = ctx_factory()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    from meshmode.mesh.generation import generate_regular_rect_mesh

    from pytools.convergence import EOCRecorder
    axis_eoc_recs = [EOCRecorder() for axis in range(dim)]

    for n in [10, 20]:
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          n=(n, ) * dim,
                                          order=4)

        discr = DGDiscretizationWithBoundaries(actx, mesh, order=4)
        nabla = sym.nabla(dim)

        for axis in range(dim):
            x = sym.nodes(dim)

            f = bind(discr, sym.sin(3 * x[axis]))(actx)
            df = bind(discr, 3 * sym.cos(3 * x[axis]))(actx)

            sym_op = nabla[axis](sym.var("f"))
            bound_op = bind(discr, sym_op)
            df_num = bound_op(f=f)

            linf_error = flat_norm(df_num - df, np.Inf)
            axis_eoc_recs[axis].add_data_point(1 / n, linf_error)

    for axis, eoc_rec in enumerate(axis_eoc_recs):
        logger.info("axis %d\n%s", axis, eoc_rec)
        assert eoc_rec.order_estimate() >= order
Пример #8
0
def test_tri_diff_mat(actx_factory, dim, order=4):
    """Check differentiation matrix along the coordinate axes on a disk

    Uses sines as the function to differentiate.
    """

    actx = actx_factory()

    from pytools.convergence import EOCRecorder
    axis_eoc_recs = [EOCRecorder() for axis in range(dim)]

    for n in [4, 8, 16]:
        mesh = mgen.generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                               b=(0.5, ) * dim,
                                               nelements_per_axis=(n, ) * dim,
                                               order=4)

        discr = DiscretizationCollection(actx, mesh, order=4)
        nabla = sym.nabla(dim)

        for axis in range(dim):
            x = sym.nodes(dim)

            f = bind(discr, sym.sin(3 * x[axis]))(actx)
            df = bind(discr, 3 * sym.cos(3 * x[axis]))(actx)

            sym_op = nabla[axis](sym.var("f"))
            bound_op = bind(discr, sym_op)
            df_num = bound_op(f=f)

            linf_error = actx.np.linalg.norm(df_num - df, ord=np.inf)
            axis_eoc_recs[axis].add_data_point(1 / n, linf_error)

    for axis, eoc_rec in enumerate(axis_eoc_recs):
        logger.info("axis %d\n%s", axis, eoc_rec)
        assert eoc_rec.order_estimate() > order - 0.25
Пример #9
0
 def f(x):
     return sym.sin(3 * x)
Пример #10
0
 def f(x):
     return sym.sin(10 * x)
Пример #11
0
 def f(x):
     return flat_obj_array(
         sym.sin(3 * x[0]) + sym.cos(3 * x[1]),
         sym.sin(2 * x[0]) + sym.cos(x[1]))
Пример #12
0
def main(write_output=True, order=4):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    dims = 2
    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims,
                                      b=(0.5, ) * dims,
                                      n=(16, ) * dims)

    if mesh.dim == 2:
        dt = 0.04
    elif mesh.dim == 3:
        dt = 0.02

    print("%d elements" % mesh.nelements)

    discr = DGDiscretizationWithBoundaries(cl_ctx, mesh, order=order)

    source_center = np.array([0.1, 0.22, 0.33])[:mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(
        -0.1,
        discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    queue = cl.CommandQueue(discr.cl_context)
    from pytools.obj_array import join_fields
    fields = join_fields(discr.zeros(queue),
                         [discr.zeros(queue) for i in range(discr.dim)])

    # FIXME
    #dt = op.estimate_rk4_timestep(discr, fields=fields)

    op.check_bc_coverage(mesh)

    # print(sym.pretty(op.sym_operator()))
    bound_op = bind(discr, op.sym_operator())

    def rhs(t, w):
        return bound_op(queue, t=t, w=w)

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 10
    nsteps = int(final_t / dt)
    print("dt=%g nsteps=%d" % (dt, nsteps))

    from grudge.shortcuts import make_visualizer
    vis = make_visualizer(discr, vis_order=order)

    step = 0

    norm = bind(discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1

            print(step, event.t, norm(queue, u=event.state_component[0]),
                  time() - t_last_step)
            if step % 10 == 0:
                vis.write_vtk_file("fld-wave-min-%04d.vtu" % step, [
                    ("u", event.state_component[0]),
                    ("v", event.state_component[1:]),
                ])
            t_last_step = time()
Пример #13
0
def mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    i_local_rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    dim = 2
    dt = 0.04
    order = 4

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          n=(16, ) * dim)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DGDiscretizationWithBoundaries(cl_ctx,
                                               local_mesh,
                                               order=order,
                                               mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(
        -0.1,
        vol_discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    from pytools.obj_array import join_fields
    fields = join_fields(
        vol_discr.zeros(queue),
        [vol_discr.zeros(queue) for i in range(vol_discr.dim)])

    # FIXME
    # dt = op.estimate_rk4_timestep(vol_discr, fields=fields)

    # FIXME: Should meshmode consider BTAG_PARTITION to be a boundary?
    #           Fails because: "found faces without boundary conditions"
    # op.check_bc_coverage(local_mesh)

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    log_filename = None
    # NOTE: LogManager hangs when using a file on a shared directory.
    # log_filename = 'grudge_log.dat'
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    # print(sym.pretty(op.sym_operator()))
    bound_op = bind(vol_discr, op.sym_operator())

    # print(bound_op)
    # 1/0

    def rhs(t, w):
        val, rhs.profile_data = bound_op(queue,
                                         profile_data=rhs.profile_data,
                                         log_quantities=log_quantities,
                                         t=t,
                                         w=w)
        return val

    rhs.profile_data = {}

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 4
    nsteps = int(final_t / dt)
    print("rank=%d dt=%g nsteps=%d" % (i_local_rank, dt, nsteps))

    # from grudge.shortcuts import make_visualizer
    # vis = make_visualizer(vol_discr, vis_order=order)

    step = 0

    norm = bind(vol_discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1
            print(step, event.t, norm(queue, u=event.state_component[0]),
                  time() - t_last_step)

            # if step % 10 == 0:
            #     vis.write_vtk_file("rank%d-fld-%04d.vtu" % (i_local_rank, step),
            #                        [("u", event.state_component[0]),
            #                         ("v", event.state_component[1:])])
            t_last_step = time()
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        print("""execute() for rank %d:
            \tInstruction Evaluation: %f%%
            \tFuture Evaluation: %f%%
            \tBusy Wait: %f%%
            \tTotal: %f seconds""" %
              (i_local_rank, data['insn_eval_time'] / data['total_time'] * 100,
               data['future_eval_time'] / data['total_time'] * 100,
               data['busy_wait_time'] / data['total_time'] * 100,
               data['total_time']))

    print_profile_data(rhs.profile_data)
    logmgr.close()
    logger.debug("Rank %d exiting", i_local_rank)
Пример #14
0
def simple_wave_entrypoint(dim=2, num_elems=256, order=4, num_steps=30,
                           log_filename="grudge.dat"):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()
    n = int(num_elems ** (1./dim))

    from meshmode.distributed import MPIMeshDistributor
    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5,)*dim,
                                          b=(0.5,)*dim,
                                          n=(n,)*dim)

        from pymetis import part_graph
        _, p = part_graph(num_parts,
                          xadj=mesh.nodal_adjacency.neighbors_starts.tolist(),
                          adjncy=mesh.nodal_adjacency.neighbors.tolist())
        part_per_element = np.array(p)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DGDiscretizationWithBoundaries(cl_ctx, local_mesh, order=order,
                                               mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(-0.1, vol_discr.dim,
            source_f=(
                sym.sin(source_omega*sym_t)
                * sym.exp(
                    -np.dot(sym_source_center_dist, sym_source_center_dist)
                    / source_width**2)),
            dirichlet_tag=BTAG_NONE,
            neumann_tag=BTAG_NONE,
            radiation_tag=BTAG_ALL,
            flux_type="upwind")

    from pytools.obj_array import join_fields
    fields = join_fields(vol_discr.zeros(queue),
            [vol_discr.zeros(queue) for i in range(vol_discr.dim)])

    from logpyle import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    # NOTE: LogManager hangs when using a file on a shared directory.
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
                        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
                        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
                        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
                        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
                        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
                        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    bound_op = bind(vol_discr, op.sym_operator())

    def rhs(t, w):
        val, rhs.profile_data = bound_op(queue, profile_data=rhs.profile_data,
                                                log_quantities=log_quantities,
                                                t=t, w=w)
        return val
    rhs.profile_data = {}

    dt = 0.04
    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=dt * num_steps):
        if isinstance(event, dt_stepper.StateComputed):
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        print("""execute() for rank %d:
            \tInstruction Evaluation: %f%%
            \tFuture Evaluation: %f%%
            \tBusy Wait: %f%%
            \tTotal: %f seconds""" %
            (comm.Get_rank(),
             data['insn_eval_time'] / data['total_time'] * 100,
             data['future_eval_time'] / data['total_time'] * 100,
             data['busy_wait_time'] / data['total_time'] * 100,
             data['total_time']))

    print_profile_data(rhs.profile_data)
    logmgr.close()
Пример #15
0
def main(write_output=True, order=4):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    dims = 2
    from meshmode.mesh.generation import generate_regular_rect_mesh
    mesh = generate_regular_rect_mesh(
            a=(-0.5,)*dims,
            b=(0.5,)*dims,
            nelements_per_axis=(20,)*dims)

    discr = DiscretizationCollection(actx, mesh, order=order)

    source_center = np.array([0.1, 0.22, 0.33])[:mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")
    c = sym.If(sym.Comparison(
                np.dot(sym_x, sym_x), "<", 0.15),
                np.float32(0.1), np.float32(0.2))

    from grudge.models.wave import VariableCoefficientWeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = VariableCoefficientWeakWaveOperator(c,
            discr.dim,
            source_f=(
                sym.sin(source_omega*sym_t)
                * sym.exp(
                    -np.dot(sym_source_center_dist, sym_source_center_dist)
                    / source_width**2)),
            dirichlet_tag=BTAG_NONE,
            neumann_tag=BTAG_NONE,
            radiation_tag=BTAG_ALL,
            flux_type="upwind")

    from pytools.obj_array import flat_obj_array
    fields = flat_obj_array(discr.zeros(actx),
            [discr.zeros(actx) for i in range(discr.dim)])

    op.check_bc_coverage(mesh)

    c_eval = bind(discr, c)(actx)

    bound_op = bind(discr, op.sym_operator())

    def rhs(t, w):
        return bound_op(t=t, w=w)

    if mesh.dim == 2:
        dt = 0.04 * 0.3
    elif mesh.dim == 3:
        dt = 0.02 * 0.1

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 1
    nsteps = int(final_t/dt)
    print("dt=%g nsteps=%d" % (dt, nsteps))

    from grudge.shortcuts import make_visualizer
    vis = make_visualizer(discr)

    step = 0

    norm = bind(discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1

            print(step, event.t, norm(u=event.state_component[0]),
                    time()-t_last_step)
            if step % 10 == 0:
                vis.write_vtk_file("fld-var-propogation-speed-%04d.vtu" % step,
                        [
                            ("u", event.state_component[0]),
                            ("v", event.state_component[1:]),
                            ("c", c_eval),
                            ])
            t_last_step = time()
Пример #16
0
 def f(x):
     return flat_obj_array(
         sym.sin(3 * x[1]) + sym.cos(3 * x[0]) + 1.0,
         sym.sin(2 * x[0]) + sym.cos(x[1]),
         3.0 * sym.cos(x[0] / 2) + sym.cos(x[1]),
     )[:ambient_dim]
Пример #17
0
def main(write_output=True, order=4):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        dims = 2
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dims,
                                          b=(0.5, ) * dims,
                                          n=(16, ) * dims)

        print("%d elements" % mesh.nelements)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)

        del mesh

    else:
        local_mesh = mesh_dist.receive_mesh_part()

    discr = DGDiscretizationWithBoundaries(actx,
                                           local_mesh,
                                           order=order,
                                           mpi_communicator=comm)

    if local_mesh.dim == 2:
        dt = 0.04
    elif local_mesh.dim == 3:
        dt = 0.02

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(
        -0.1,
        discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    from pytools.obj_array import flat_obj_array
    fields = flat_obj_array(discr.zeros(actx),
                            [discr.zeros(actx) for i in range(discr.dim)])

    # FIXME
    #dt = op.estimate_rk4_timestep(discr, fields=fields)

    op.check_bc_coverage(local_mesh)

    # print(sym.pretty(op.sym_operator()))
    bound_op = bind(discr, op.sym_operator())

    def rhs(t, w):
        return bound_op(t=t, w=w)

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 10
    nsteps = int(final_t / dt)
    print("dt=%g nsteps=%d" % (dt, nsteps))

    from grudge.shortcuts import make_visualizer
    vis = make_visualizer(discr, vis_order=order)

    step = 0

    norm = bind(discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    rank = comm.Get_rank()

    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1

            print(step, event.t, norm(u=event.state_component[0]),
                  time() - t_last_step)
            if step % 10 == 0:
                vis.write_vtk_file(
                    "fld-wave-min-mpi-%03d-%04d.vtu" % (
                        rank,
                        step,
                    ), [
                        ("u", event.state_component[0]),
                        ("v", event.state_component[1:]),
                    ])
            t_last_step = time()
Пример #18
0
 def f(x):
     return sym.join_fields(
         sym.sin(3 * x[0]) + sym.cos(3 * x[1]),
         sym.sin(2 * x[0]) + sym.cos(x[1]))