Пример #1
0
def main(final_time=1, write_output=False):
    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    from grudge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from grudge.mesh import make_box_mesh
        mesh = make_box_mesh((0, 0, 0), (10, 10, 10), max_volume=0.5)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "sinewave-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sinewave = SineWave()
        fields = sinewave.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = sinewave.properties()

        from grudge.mesh import BTAG_ALL
        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=mesh.dimensions,
                                 gamma=gamma,
                                 mu=mu,
                                 prandtl=prandtl,
                                 spec_gas_const=spec_gas_const,
                                 bc_inflow=sinewave,
                                 bc_outflow=sinewave,
                                 bc_noslip=sinewave,
                                 inflow_tag=BTAG_ALL,
                                 source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_name = ("euler-sinewave-%(order)d-%(els)d.dat" % {
                "order": order,
                "els": len(mesh.elements)
            })
        else:
            log_name = False
        logmgr = LogManager(log_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                #if step % 10 == 0:
                if write_output:
                    visf = vis.make_file("sinewave-%d-%04d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", op.rho(true_fields)),
                            #("true_e", op.e(true_fields)),
                            #("true_rho_u", op.rho_u(true_fields)),
                            #("true_u", op.u(true_fields)),

                            #("rhs_rho", op.rho(rhs_fields)),
                            #("rhs_e", op.e(rhs_fields)),
                            #("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.close()
            discr.close()

        true_fields = sinewave.volume_interpolant(t, discr)
        eoc_rec.add_data_point(order, discr.norm(fields - true_fields))
        print()
        print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))
Пример #2
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context(["cuda"])

    if rcon.is_head_rank:
        mesh = make_boxmesh()
        #from grudge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        box = UniformMachFlow(angle_of_attack=0)

        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                                 gamma=box.gamma,
                                 mu=box.mu,
                                 prandtl=box.prandtl,
                                 spec_gas_const=box.spec_gas_const,
                                 bc_inflow=box,
                                 bc_outflow=box,
                                 bc_noslip=box,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                #"cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code",
                "cuda_no_plan_el_local",
            ],
            default_scalar_type=numpy.float32,
            tune_for=op.sym_operator())

        from grudge.visualization import SiloVisualizer, VtkVisualizer  # noqa
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = box.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w",
                            rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        from pytools.log import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""
            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1",
                                     "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        logmgr.add_quantity(ChangeSinceLastStep())

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                    #if False:
                    visf = vis.make_file("box-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            # ("rhs_rho", discr.convert_volume(
                            #     op.rho(rhs_fields), kind="numpy")),
                            # ("rhs_e", discr.convert_volume(
                            #     op.e(rhs_fields), kind="numpy")),
                            # ("rhs_rho_u", discr.convert_volume(
                            #     op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Пример #3
0
def main(write_output=True):
    from grudge.backends import guess_run_context
    rcon = guess_run_context(
        #["cuda"]
    )

    gamma = 1.4

    # at A=1 we have case of isentropic vortex, source terms
    # arise for other values
    densityA = 2.0

    from grudge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from grudge.mesh import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 1
        mesh = make_centered_regular_rect_mesh((0, -5), (10, 5),
                                               n=(9, 9),
                                               post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5]:
        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[  #"cuda_no_plan",
                #"print_op_code"
            ],
            default_scalar_type=numpy.float64)

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        vortex = Vortex(beta=5,
                        gamma=gamma,
                        center=[5, 0],
                        velocity=[1, 0],
                        densityA=densityA)
        fields = vortex.volume_interpolant(0, discr)
        sources = SourceTerms(beta=5,
                              gamma=gamma,
                              center=[5, 0],
                              velocity=[1, 0],
                              densityA=densityA)

        from grudge.models.gas_dynamics import (GasDynamicsOperator,
                                                GammaLawEOS)
        from grudge.mesh import BTAG_ALL

        op = GasDynamicsOperator(dimensions=2,
                                 mu=0.0,
                                 prandtl=0.72,
                                 spec_gas_const=287.1,
                                 equation_of_state=GammaLawEOS(vortex.gamma),
                                 bc_inflow=vortex,
                                 bc_outflow=vortex,
                                 bc_noslip=vortex,
                                 inflow_tag=BTAG_ALL,
                                 source=sources)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        # limiter setup -------------------------------------------------------
        from grudge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, gamma, 2, op)

        # time stepper --------------------------------------------------------
        from grudge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        t = 0

        #fields = limiter(fields)

        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=.1,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: 0.4 * op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 1 == 0 and write_output:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    true_fields = vortex.volume_interpolant(t, discr)

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            #("diff_rho", "rho-true_rho"),
                            #("diff_e", "e-true_e"),
                            #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = vortex.volume_interpolant(t, discr)
            l2_error = discr.norm(fields - true_fields)
            l2_error_rho = discr.norm(op.rho(fields) - op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields) - op.e(true_fields))
            l2_error_rhou = discr.norm(
                op.rho_u(fields) - op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields) - op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error_rho)
            print()
            print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()
Пример #4
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context(
        #["cuda"]
    )

    from grudge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    def boundary_tagger(vertices, el, face_nr, all_v):
        return ["inflow"]

    if rcon.is_head_rank:
        from grudge.mesh import make_rect_mesh, \
                               make_centered_regular_rect_mesh
        #mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
        refine = 1
        mesh = make_centered_regular_rect_mesh(
            (0, 0),
            (10, 1),
            n=(20, 4),
            #periodicity=(True, False),
            post_refine_factor=refine,
            boundary_tagger=boundary_tagger)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        shearflow = SteadyShearFlow()
        fields = shearflow.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = shearflow.properties()

        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=2,
                                 gamma=gamma,
                                 mu=mu,
                                 prandtl=prandtl,
                                 spec_gas_const=spec_gas_const,
                                 bc_inflow=shearflow,
                                 bc_outflow=shearflow,
                                 bc_noslip=shearflow,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        # needed to get first estimate of maximum eigenvalue
        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
                            "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=0.3,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0:
                    #if False:
                    visf = vis.make_file("shearflow-%d-%04d" % (order, step))

                    #true_fields = shearflow.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
                        ],
                        expressions=[
                            #("diff_rho", "rho-true_rho"),
                            #("diff_e", "e-true_e"),
                            #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = shearflow.volume_interpolant(t, discr)
            l2_error = discr.norm(op.u(fields) - op.u(true_fields))
            eoc_rec.add_data_point(order, l2_error)
            print()
            print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))

            logmgr.set_constant("l2_error", l2_error)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Пример #5
0
def main(write_output=True, allow_features=None):
    from grudge.timestep import RK4TimeStepper
    from grudge.mesh import make_ball_mesh, make_cylinder_mesh, make_box_mesh
    from grudge.visualization import \
            VtkVisualizer, \
            SiloVisualizer, \
            get_rank_partition
    from math import sqrt, pi

    from grudge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    dims = 3

    if rcon.is_head_rank:
        if dims == 2:
            from grudge.mesh import make_rect_mesh
            mesh = make_rect_mesh(a=(-10.5, -1.5), b=(10.5, 1.5), max_area=0.1)
        elif dims == 3:
            from grudge.mesh import make_box_mesh
            mesh = make_box_mesh(a=(-10.5, -1.5, -1.5),
                                 b=(10.5, 1.5, 1.5),
                                 max_volume=0.1)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    #for order in [1,2,3,4,5,6]:
    discr = rcon.make_discretization(mesh_data, order=3)

    if write_output:
        vis = VtkVisualizer(discr, rcon, "dipole")

    from analytic_solutions import DipoleFarField, SphericalFieldAdapter
    from grudge.data import ITimeDependentGivenFunction

    sph_dipole = DipoleFarField(
        q=1,  #C
        d=1 / 39,
        omega=2 * pi * 1e8,
        epsilon=epsilon0,
        mu=mu0,
    )
    cart_dipole = SphericalFieldAdapter(sph_dipole)

    class PointDipoleSource(ITimeDependentGivenFunction):
        def __init__(self):
            from pyrticle.tools import CInfinityShapeFunction
            sf = CInfinityShapeFunction(0.1 * sph_dipole.wavelength,
                                        discr.dimensions)
            self.num_sf = discr.interpolate_volume_function(
                lambda x, el: sf(x))
            self.vol_0 = discr.volume_zeros()

        def volume_interpolant(self, t, discr):
            from grudge.tools import make_obj_array
            return make_obj_array([
                self.vol_0, self.vol_0,
                sph_dipole.source_modulation(t) * self.num_sf
            ])

    from grudge.mesh import BTAG_ALL, BTAG_NONE
    if dims == 2:
        from grudge.models.em import TMMaxwellOperator as MaxwellOperator
    else:
        from grudge.models.em import MaxwellOperator

    op = MaxwellOperator(
        epsilon,
        mu,
        flux_type=1,
        pec_tag=BTAG_NONE,
        absorb_tag=BTAG_ALL,
        current=PointDipoleSource(),
    )

    fields = op.assemble_eh(discr=discr)

    if rcon.is_head_rank:
        print("#elements=", len(mesh.elements))

    stepper = RK4TimeStepper()

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "dipole.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from grudge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    from pytools.log import PushLogQuantity
    relerr_e_q = PushLogQuantity("relerr_e", "1",
                                 "Relative error in masked E-field")
    relerr_h_q = PushLogQuantity("relerr_h", "1",
                                 "Relative error in masked H-field")
    logmgr.add_quantity(relerr_e_q)
    logmgr.add_quantity(relerr_h_q)

    logmgr.add_watches([
        "step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max",
        "relerr_e", "relerr_h"
    ])

    if write_output:
        point_timeseries = [(open("b-x%d-vs-time.dat" % i,
                                  "w"), open("b-x%d-vs-time-true.dat" % i,
                                             "w"),
                             discr.get_point_evaluator(
                                 numpy.array([i, 0, 0][:dims],
                                             dtype=discr.default_scalar_type)))
                            for i in range(1, 5)]

    # timestep loop -------------------------------------------------------
    mask = discr.interpolate_volume_function(sph_dipole.far_field_mask)

    def apply_mask(field):
        from grudge.tools import log_shape
        ls = log_shape(field)
        result = discr.volume_empty(ls)
        from pytools import indices_in_shape
        for i in indices_in_shape(ls):
            result[i] = mask * field[i]

        return result

    rhs = op.bind(discr)

    t = 0
    try:
        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=1e-8,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if write_output and step % 10 == 0:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                sph_dipole.set_time(t)
                true_e, true_h = op.split_eh(
                    discr.interpolate_volume_function(cart_dipole))
                visf = vis.make_file("dipole-%04d" % step)

                mask_e = apply_mask(e)
                mask_h = apply_mask(h)
                mask_true_e = apply_mask(true_e)
                mask_true_h = apply_mask(true_h)

                from pyvisfile.silo import DB_VARTYPE_VECTOR
                vis.add_data(visf, [("e", e), ("h", h), ("true_e", true_e),
                                    ("true_h", true_h), ("mask_e", mask_e),
                                    ("mask_h", mask_h),
                                    ("mask_true_e", mask_true_e),
                                    ("mask_true_h", mask_true_h)],
                             time=t,
                             step=step)
                visf.close()
                sub_timer.stop().submit()

                from grudge.tools import relative_error
                relerr_e_q.push_value(
                    relative_error(discr.norm(mask_e - mask_true_e),
                                   discr.norm(mask_true_e)))
                relerr_h_q.push_value(
                    relative_error(discr.norm(mask_h - mask_true_h),
                                   discr.norm(mask_true_h)))

                if write_output:
                    for outf_num, outf_true, evaluator in point_timeseries:
                        for outf, ev_h in zip([outf_num, outf_true],
                                              [h, true_h]):
                            outf.write("%g\t%g\n" %
                                       (t, op.mu * evaluator(ev_h[1])))
                            outf.flush()

            fields = stepper(fields, t, dt, rhs)

    finally:
        if write_output:
            vis.close()

        logmgr.save()
        discr.close()
Пример #6
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context(["cuda", "mpi"])

    if rcon.is_head_rank:
        mesh = make_wingmesh()
        #from grudge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        wing = UniformMachFlow(angle_of_attack=0)

        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                                 gamma=wing.gamma,
                                 mu=wing.mu,
                                 prandtl=wing.prandtl,
                                 spec_gas_const=wing.spec_gas_const,
                                 bc_inflow=wing,
                                 bc_outflow=wing,
                                 bc_noslip=wing,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code"
                "cuda_no_metis",
            ],
            default_scalar_type=numpy.float64,
            tune_for=op.sym_operator())

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = wing.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w",
                            rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: 0.6 * op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                    #if False:
                    visf = vis.make_file("wing-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    from grudge.discretization import ones_on_boundary
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                t += dt

        finally:
            vis.close()
            logmgr.save()
            discr.close()