def business_day_count( begin_dates: DateOrDates, end_dates: DateOrDates, calendars: Union[str, Tuple[str, ...]] = (), week_mask: Optional[str] = None) -> Union[int, Tuple[int]]: """ Determine the number of business days between begin_dates and end_dates :param begin_dates: A date or collection of beginning dates :param end_dates: A date or collection of end dates :param calendars: Calendars to use for holidays :param week_mask: Which days are considered weekends (defaults to Saturday and Sunday) :return: An int or tuple of ints, representing the number of business days between begin_dates and end_dates **Examples** >>> import datetime as dt >>> today = dt.date.today() >>> bus_days = business_day_count(today, today + dt.timedelta(days=7)) """ calendar = GsCalendar.get(calendars) res = np.busday_count(begin_dates, end_dates, busdaycal=calendar.business_day_calendar(week_mask)) return tuple(res) if isinstance(res, np.ndarray) else res
def business_day_offset(dates: DateOrDates, offsets: Union[int, Iterable[int]], roll: str = 'raise', calendars: Union[str, Tuple[str, ...]] = (), week_mask: Optional[str] = None) -> DateOrDates: """ Apply offsets to the dates and move to the nearest business date :param dates: The input date or dates :param offsets: The number of days by which to adjust the dates :param roll: Which direction to roll, in order to get to the nearest business date :param calendars: Calendars to use for holidays :param week_mask: Which days are considered weekends (defaults to Saturday and Sunday) :return: A date (if dates is a single date) or tuple of dates, adjusted by the offsets **Examples** >>> import datetime as dt >>> prev_bus_date = business_day_offset(dt.date.today(), -1, roll='forward') """ calendar = GsCalendar.get(calendars) res = np.busday_offset( dates, offsets, roll, busdaycal=calendar.business_day_calendar(week_mask)).astype(dt.date) return tuple(res) if isinstance(res, np.ndarray) else res
def is_business_day(dates: DateOrDates, calendars: Union[str, Tuple[str, ...]] = (), week_mask: Optional[str] = None)\ -> Union[bool, Tuple[bool]]: """ Determine whether each date in dates is a business day :param dates: The input date or dates :param calendars: Calendars to use for holidays :param week_mask: Which days are considered weekends (defaults to Saturday and Sunday) :return: True/False if dates is a single date. A tuple indicating True/False for each date if dates is an iterable **Examples** >>> import datetime as dt >>> is_business_day(dt.date.today()) >>> is_business_day(dt.date(2019, 7, 4), calendars=('NYSE',)) """ calendar = GsCalendar.get(calendars) res = np.is_busday(dates, busdaycal=calendar.business_day_calendar(week_mask)) return tuple(res) if isinstance(res, np.ndarray) else res
def basis_swap_term_structure(asset: Asset, spread_benchmark_type: BenchmarkType = None, spread_tenor: str = None, reference_benchmark_type: BenchmarkType = None, reference_tenor: str = None, forward_tenor: Optional[GENERIC_DATE] = None, clearing_house: _ClearingHouse = None, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False, ) -> Series: """ GS end-of-day Floating-Floating interest rate swap (IRS) term structure across major currencies. :param asset: asset object loaded from security master :param spread_benchmark_type: benchmark type of spread leg on which basis spread is added e.g. LIBOR :param spread_tenor: relative date representation of expiration date of spread leg e.g. 1m :param reference_benchmark_type: benchmark type of reference leg e.g. LIBOR :param reference_tenor: relative date representation of expiration date of reference leg e.g. 1m :param forward_tenor: absolute / relative date representation of forward starting point eg: '1y' or 'Spot' for spot starting swaps, 'imm1' or 'frb1' :param clearing_house: Example - "LCH", "EUREX", "JSCC", "CME" :param pricing_date: YYYY-MM-DD or relative date :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swap rate curve """ if real_time: raise NotImplementedError('realtime basis_swap_rate not implemented') currency = CurrencyEnum(asset.get_identifier(AssetIdentifier.BLOOMBERG_ID)) if currency.value not in ['JPY', 'EUR', 'USD', 'GBP']: raise NotImplementedError('Data not available for {} basis swap rates'.format(currency.value)) clearing_house = _check_clearing_house(clearing_house) for benchmark_type in [spread_benchmark_type, reference_benchmark_type]: _check_benchmark_type(currency, benchmark_type) # default benchmark types legs_w_defaults = dict() legs_w_defaults['spread'] = _get_swap_leg_defaults(currency, spread_benchmark_type, spread_tenor) legs_w_defaults['reference'] = _get_swap_leg_defaults(currency, reference_benchmark_type, reference_tenor) for key, leg in legs_w_defaults.items(): if not re.fullmatch('(\\d+)([bdwmy])', leg['floating_rate_tenor']): raise MqValueError('invalid floating rate tenor ' + leg['floating_rate_tenor'] + ' index: ' + leg['benchmark_type']) forward_tenor = check_forward_tenor(forward_tenor) calendar = legs_w_defaults['spread']['pricing_location'].value if pricing_date is not None and pricing_date in list(GsCalendar.get(calendar).holidays): raise MqValueError('Specified pricing date is a holiday in {} calendar'.format(calendar)) csaTerms = currency.value + '-1' kwargs = dict(type='BasisSwap', asset_parameters_payer_rate_option=legs_w_defaults['spread']['benchmark_type'], asset_parameters_payer_designated_maturity=legs_w_defaults['spread']['floating_rate_tenor'], asset_parameters_receiver_rate_option=legs_w_defaults['reference']['benchmark_type'], asset_parameters_receiver_designated_maturity=legs_w_defaults['reference']['floating_rate_tenor'], asset_parameters_clearing_house=clearing_house.value, asset_parameters_effective_date=forward_tenor, asset_parameters_notional_currency=currency.name, pricing_location=legs_w_defaults['spread']['pricing_location'].value) assets = GsAssetApi.get_many_assets(**kwargs) if len(assets) == 0: raise MqValueError('Specified arguments did not match any asset in the dataset') else: rate_mqids = [asset.id for asset in assets] asset_string = '' for mqid in rate_mqids: asset_string = asset_string + ',' + mqid _logger.debug('assets returned %s', asset_string) _logger.debug('where spread_benchmark_type=%s, spread_tenor=%s, reference_benchmark_type=%s, ' 'reference_tenor=%s, forward_tenor=%s, pricing_location=%s ', legs_w_defaults['spread']['benchmark_type'], legs_w_defaults['spread']['floating_rate_tenor'], legs_w_defaults['reference']['benchmark_type'], legs_w_defaults['reference']['floating_rate_tenor'], forward_tenor, legs_w_defaults['spread']['pricing_location'].value) start, end = _range_from_pricing_date(calendar, pricing_date) with DataContext(start, end): where = dict(csaTerms=csaTerms) q = GsDataApi.build_market_data_query(rate_mqids, QueryType.BASIS_SWAP_RATE, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: series = ExtendedSeries() else: latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] business_day = _get_custom_bd(calendar) df = df.assign(expirationDate=df.index + df['terminationTenor'].map(_to_offset) + business_day - business_day) df = df.set_index('expirationDate') df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date: DataContext.current.end_date] series = ExtendedSeries() if df.empty else ExtendedSeries(df['basisSwapRate']) series.dataset_ids = getattr(df, 'dataset_ids', ()) return series
def _get_custom_bd(exchange): from pandas.tseries.offsets import CustomBusinessDay calendar = GsCalendar.get(exchange).business_day_calendar() return CustomBusinessDay(calendar=calendar)
def swap_term_structure(asset: Asset, benchmark_type: BenchmarkType = None, floating_rate_tenor: str = None, forward_tenor: Optional[GENERIC_DATE] = None, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day Fixed-Floating interest rate swap (IRS) term structure across major currencies. :param asset: asset object loaded from security master :param benchmark_type: benchmark type e.g. LIBOR :param floating_rate_tenor: floating index rate :param forward_tenor: absolute / relative date representation of forward starting point eg: '1y' or 'Spot' for spot starting swaps, 'imm1' or 'frb1' :param pricing_date: YYYY-MM-DD or relative date :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swap rate term structure """ if real_time: raise NotImplementedError('realtime swap_rate not implemented') currency = asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) currency = CurrencyEnum(currency) if currency.value not in ['JPY', 'EUR', 'USD', 'GBP', 'CHF', 'SEK']: raise NotImplementedError( 'Data not available for {} swap rates'.format(currency.value)) clearing_house = 'LCH' _check_benchmark_type(currency, benchmark_type) forward_tenor = check_forward_tenor(forward_tenor) defaults = _get_swap_leg_defaults(currency, benchmark_type, floating_rate_tenor) if not re.fullmatch('(\\d+)([bdwmy])', defaults['floating_rate_tenor']): raise MqValueError('invalid floating rate tenor ' + defaults['floating_rate_tenor'] + ' for index: ' + defaults['benchmark_type']) calendar = defaults['pricing_location'].value if pricing_date is not None and pricing_date in list( GsCalendar.get(calendar).holidays): raise MqValueError( 'Specified pricing date is a holiday in {} calendar'.format( calendar)) csaTerms = currency.value + '-1' fixed_rate = 'ATM' kwargs = dict( type='Swap', asset_parameters_floating_rate_option=defaults['benchmark_type'], asset_parameters_fixed_rate=fixed_rate, asset_parameters_clearing_house=clearing_house, asset_parameters_floating_rate_designated_maturity=defaults[ 'floating_rate_tenor'], asset_parameters_effective_date=forward_tenor, asset_parameters_notional_currency=currency.name, pricing_location=defaults['pricing_location'].value) assets = GsAssetApi.get_many_assets(**kwargs) if len(assets) == 0: raise MqValueError( 'Specified arguments did not match any asset in the dataset') else: rate_mqids = [asset.id for asset in assets] asset_string = '' for mqid in rate_mqids: asset_string = asset_string + ',' + mqid _logger.debug('assets returned %s', asset_string) _logger.debug( 'where benchmark_type=%s, floating_rate_tenor=%s, forward_tenor=%s, ' 'pricing_location=%s', defaults['benchmark_type'], defaults['floating_rate_tenor'], forward_tenor, defaults['pricing_location'].value) start, end = _range_from_pricing_date(calendar, pricing_date) with DataContext(start, end): where = FieldFilterMap(csaTerms=csaTerms) q = GsDataApi.build_market_data_query(rate_mqids, QueryType.SWAP_RATE, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: return pd.Series() latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] business_day = _get_custom_bd(calendar) df = df.assign(expirationDate=df.index + df['terminationTenor'].map(_to_offset) + business_day - business_day) df = df.set_index('expirationDate') df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date:DataContext.current.end_date] return df['swapRate'] if not df.empty else pd.Series()
def basis_swap_term_structure( asset: Asset, spread_benchmark_type: str = None, spread_tenor: str = None, reference_benchmark_type: str = None, reference_tenor: str = None, forward_tenor: Optional[GENERIC_DATE] = None, clearing_house: _ClearingHouse = None, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False, ) -> Series: """ GS end-of-day Floating-Floating interest rate swap (IRS) term structure across major currencies. :param asset: asset object loaded from security master :param spread_benchmark_type: benchmark type of spread leg on which basis spread is added e.g. LIBOR :param spread_tenor: relative date representation of expiration date of spread leg e.g. 1m :param reference_benchmark_type: benchmark type of reference leg e.g. LIBOR :param reference_tenor: relative date representation of expiration date of reference leg e.g. 1m :param forward_tenor: absolute / relative date representation of forward starting point eg: '1y' or 'Spot' for spot starting swaps, 'imm1' or 'frb1' :param clearing_house: Example - "LCH", "EUREX", "JSCC", "CME" :param pricing_date: YYYY-MM-DD or relative date :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swap rate curve """ if real_time: raise NotImplementedError('realtime basis_swap_rate not implemented') kwargs = _get_basis_swap_kwargs( asset=asset, spread_benchmark_type=spread_benchmark_type, spread_tenor=spread_tenor, reference_benchmark_type=reference_benchmark_type, reference_tenor=reference_tenor, forward_tenor=forward_tenor, clearing_house=clearing_house) calendar = kwargs['pricing_location'] if pricing_date is not None and pricing_date in list( GsCalendar.get(calendar).holidays): raise MqValueError( 'Specified pricing date is a holiday in {} calendar'.format( calendar)) rate_mqids = _get_mdapi_rates_assets(**kwargs) _logger.debug('assets returned %s', ', '.join(rate_mqids)) _logger.debug( 'where spread_benchmark_type=%s, spread_tenor=%s, reference_benchmark_type=%s, ' 'reference_tenor=%s, forward_tenor=%s, pricing_location=%s ', kwargs['asset_parameters_payer_rate_option'], kwargs['asset_parameters_payer_designated_maturity'], kwargs['asset_parameters_receiver_rate_option'], kwargs['asset_parameters_receiver_designated_maturity'], kwargs['asset_parameters_effective_date'], kwargs['pricing_location']) start, end = _range_from_pricing_date(calendar, pricing_date) with DataContext(start, end): where = dict(csaTerms=kwargs['asset_parameters_notional_currency'] + '-1') q = GsDataApi.build_market_data_query(rate_mqids, QueryType.BASIS_SWAP_RATE, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: series = ExtendedSeries() else: latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] business_day = _get_custom_bd(calendar) df = df.assign(expirationDate=df.index + df['terminationTenor'].map(_to_offset) + business_day - business_day) df = df.set_index('expirationDate') df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date:DataContext.current. end_date] series = ExtendedSeries() if df.empty else ExtendedSeries( df['basisSwapRate']) series.dataset_ids = getattr(df, 'dataset_ids', ()) return series
def basis_swap_term_structure( asset: Asset, spread_benchmark_type: str = None, spread_tenor: str = None, reference_benchmark_type: str = None, reference_tenor: str = None, tenor_type: _SwapTenorType = None, tenor: Optional[GENERIC_DATE] = None, clearing_house: _ClearingHouse = None, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False, ) -> Series: """ GS end-of-day Floating-Floating interest rate swap (IRS) term structure across major currencies. :param asset: asset object loaded from security master :param spread_benchmark_type: benchmark type of spread leg on which basis spread is added e.g. LIBOR :param spread_tenor: relative date representation of expiration date of spread leg e.g. 1m :param reference_benchmark_type: benchmark type of reference leg e.g. LIBOR :param reference_tenor: relative date representation of expiration date of reference leg e.g. 1m :param tenor_type: specify which tenor should be fixed, SWAP_TENOR or FORWARD_TENOR :param tenor: absolute / relative date representation of forward starting point or swap maturity :param clearing_house: Example - "LCH", "EUREX", "JSCC", "CME" :param pricing_date: YYYY-MM-DD or relative date :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swap rate curve """ if real_time: raise NotImplementedError('realtime basis_swap_rate not implemented') tenor_type = _check_tenor_type(tenor_type) tenor_dict = _check_term_structure_tenor(tenor_type=tenor_type, tenor=tenor) kwargs = _get_basis_swap_kwargs( asset=asset, spread_benchmark_type=spread_benchmark_type, spread_tenor=spread_tenor, reference_benchmark_type=reference_benchmark_type, reference_tenor=reference_tenor, clearing_house=clearing_house) kwargs[tenor_dict['tenor_dataset_field']] = tenor_dict['tenor'] calendar = kwargs['pricing_location'] if pricing_date is not None and pricing_date in list( GsCalendar.get(calendar).holidays): raise MqValueError( 'Specified pricing date is a holiday in {} calendar'.format( calendar)) rate_mqids = _get_mdapi_rates_assets(**kwargs) if isinstance(rate_mqids, str): # single asset returned rate_mqids = [rate_mqids] _logger.debug('assets returned %s', ', '.join(rate_mqids)) _logger.debug( 'where spread_benchmark_type=%s, spread_tenor=%s, reference_benchmark_type=%s, ' 'reference_tenor=%s, %s=%s, pricing_location=%s ', kwargs['asset_parameters_payer_rate_option'], kwargs['asset_parameters_payer_designated_maturity'], kwargs['asset_parameters_receiver_rate_option'], kwargs['asset_parameters_receiver_designated_maturity'], kwargs[tenor_dict['tenor_dataset_field']], tenor_dict['tenor'], kwargs['pricing_location']) where = _get_basis_swap_csa_terms( kwargs['asset_parameters_notional_currency'], kwargs['asset_parameters_payer_rate_option'], kwargs['asset_parameters_receiver_rate_option']) start, end = _range_from_pricing_date(calendar, pricing_date) with DataContext(start, end): q = GsDataApi.build_market_data_query(rate_mqids, QueryType.BASIS_SWAP_RATE, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: series = ExtendedSeries() else: latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] biz_day = _get_custom_bd(calendar) col_to_plot = tenor_dict['tenor_to_plot'] if isinstance(df, pd.Series): # single asset returned series = ExtendedSeries( pd.Series(df['basisSwapRate'], index=[ _get_term_struct_date(df[col_to_plot], latest, biz_day) ])) series = series.loc[DataContext.current.start_date:DataContext. current.end_date] else: if col_to_plot == 'effectiveTenor': # for forward term structure imm date assets df = df[~df[col_to_plot].isin(['imm1', 'imm2', 'imm3', 'imm4'] )] df['expirationDate'] = df[col_to_plot].apply(_get_term_struct_date, args=(latest, biz_day)) df = df.set_index('expirationDate') df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date:DataContext.current. end_date] series = ExtendedSeries() if df.empty else ExtendedSeries( df['basisSwapRate']) series.dataset_ids = getattr(df, 'dataset_ids', ()) return series
def swap_term_structure(asset: Asset, benchmark_type: str = None, floating_rate_tenor: str = None, tenor_type: _SwapTenorType = None, tenor: Optional[GENERIC_DATE] = None, clearing_house: _ClearingHouse = None, pricing_date: Optional[GENERIC_DATE] = None, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day Fixed-Floating interest rate swap (IRS) term structure across major currencies. :param asset: asset object loaded from security master :param benchmark_type: benchmark type e.g. LIBOR :param floating_rate_tenor: floating index rate :param tenor_type: specify which tenor should be fixed, SWAP_TENOR or FORWARD_TENOR :param tenor: absolute / relative date representation of forward starting point or swap maturity :param clearing_house: Example - "LCH", "EUREX", "JSCC", "CME" :param pricing_date: YYYY-MM-DD or relative date :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swap rate term structure """ if real_time: raise NotImplementedError('realtime swap_rate not implemented') currency = asset.get_identifier(AssetIdentifier.BLOOMBERG_ID) currency = CurrencyEnum(currency) if currency.value not in ['JPY', 'EUR', 'USD', 'GBP', 'CHF', 'SEK']: raise NotImplementedError( 'Data not available for {} swap rates'.format(currency.value)) clearing_house = _check_clearing_house(clearing_house) benchmark_type = _check_benchmark_type(currency, benchmark_type) tenor_type = _check_tenor_type(tenor_type) tenor_dict = _check_term_structure_tenor(tenor_type=tenor_type, tenor=tenor) defaults = _get_swap_leg_defaults(currency, benchmark_type, floating_rate_tenor) if not re.fullmatch('(\\d+)([bdwmy])', defaults['floating_rate_tenor']): raise MqValueError('invalid floating rate tenor ' + defaults['floating_rate_tenor'] + ' for index: ' + defaults['benchmark_type']) calendar = defaults['pricing_location'].value if pricing_date is not None and pricing_date in list( GsCalendar.get(calendar).holidays): raise MqValueError( 'Specified pricing date is a holiday in {} calendar'.format( calendar)) fixed_rate = 'ATM' kwargs = dict( type='Swap', asset_parameters_floating_rate_option=defaults['benchmark_type'], asset_parameters_fixed_rate=fixed_rate, asset_parameters_clearing_house=clearing_house.value, asset_parameters_floating_rate_designated_maturity=defaults[ 'floating_rate_tenor'], asset_parameters_notional_currency=currency.name, pricing_location=defaults['pricing_location'].value) kwargs[tenor_dict['tenor_dataset_field']] = tenor_dict['tenor'] rate_mqids = _get_mdapi_rates_assets(**kwargs) if isinstance(rate_mqids, str): rate_mqids = [rate_mqids] _logger.debug('assets returned %s', ', '.join(rate_mqids)) _logger.debug( 'where benchmark_type=%s, floating_rate_tenor=%s, %s=%s, ' 'pricing_location=%s', defaults['benchmark_type'], defaults['floating_rate_tenor'], tenor_type.value, tenor_dict['tenor'], defaults['pricing_location'].value) where = _get_swap_csa_terms(currency.value, defaults['benchmark_type']) start, end = _range_from_pricing_date(calendar, pricing_date) with DataContext(start, end): q = GsDataApi.build_market_data_query(rate_mqids, QueryType.SWAP_RATE, where=where, source=source, real_time=real_time) _logger.debug('q %s', q) df = _market_data_timed(q) if df.empty: series = ExtendedSeries() else: latest = df.index.max() _logger.info('selected pricing date %s', latest) df = df.loc[latest] biz_day = _get_custom_bd(calendar) col_to_plot = tenor_dict['tenor_to_plot'] if isinstance(df, pd.Series): series = ExtendedSeries( pd.Series(df['swapRate'], index=[ _get_term_struct_date(df[col_to_plot], latest, biz_day) ])) series = series.loc[DataContext.current.start_date:DataContext. current.end_date] else: if col_to_plot == 'effectiveTenor': df = df[~df[col_to_plot].isin(['imm1', 'imm2', 'imm3', 'imm4'] )] df['expirationDate'] = df[col_to_plot].apply(_get_term_struct_date, args=(latest, biz_day)) df = df.set_index('expirationDate') df.sort_index(inplace=True) df = df.loc[DataContext.current.start_date:DataContext.current. end_date] series = ExtendedSeries() if df.empty else ExtendedSeries( df['swapRate']) series.dataset_ids = getattr(df, 'dataset_ids', ()) return series