Пример #1
0
def main():
    """Simulate temperature dependent aggregation and disaggregation.
    
    Clearly need to explicitly write temperature into the simulate method in
    the future.
    """
    # Rates
    k1 = 0.01  #disaggregation rate
    k2 = 0.1  #chaperone degradation rate
    k3 = 0.00001  #dimerization rate
    k4 = 0.01  #heat induced chaperone production rate
    k5 = 0.01  #heat inactivation rate of assembler
    T1 = 200
    T2 = 220
    # Species
    A = Species("A", 100)
    AA = Species("AA", 0)
    iAA = Species("iAA", 0)
    C = Species("C", 10)
    # Temperature independent reactions
    disagg = Reactivation("Disagg", [iAA, C], [A, C], k1)
    deg = UniDeg("C Degredation", [C], [None], k2)
    # Simulation and Temperature-Dependent Reaction
    # Temperature ramp = 300, 320, 300
    nuc = Temp_Dimerization("Nucleation", [A], [AA], k3, T1)
    hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], k4, T1)
    inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], k5, T1)
    sp_list = [A, AA, iAA, C]
    rxn_list = [nuc, inactivation, disagg, hip, deg]
    system = Network(sp_list, rxn_list)
    x = system.simulate(0, 20, "None")
    #nuc = Temp_Dimerization("Nucleation", [A], [AA], k3, 30)
    #hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], k4, T2)
    #inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], k5, T2)
    #y = system.simulate(x[-1,0], 50, "None")
    #nuc = Temp_Dimerization("Nucleation", [A], [AA], k3, 10)
    #hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], k4, T1)
    #inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], k5, T1)
    #z = system.simulate(y[-1,0], 70, "None")

    #final = np.vstack((x, y, z))
    #x2 = [i[-1,0] for i in [x, y, z]]
    #y2 = [T1, T2, T1]

    fig, axis = plt.subplots(figsize=(10, 10))
    for i in range(1, len(sp_list) + 1):
        axis.step(x[:, 0], x[:, i], label=sp_list[i - 1].name)
    plt.legend(loc=0)
    plt.xlim(0, x[-1, 0])
    plt.xlabel("Time")
    plt.ylabel("Molecular species count")
    #axis2 = axis.twinx()
    #axis2.step(x2,y2, c='darkgray')
    #plt.ylim(T1,T2)
    #plt.fill_between([x2[0], x2[1]], [220,220], alpha=0.5, color='darkgray')
    #plt.ylabel("Temperature (T)")
    #plt.savefig("reactivation_plot.pdf")
    plt.show()
Пример #2
0
def main():
    """Simulate temperature dependent aggregation and disaggregation.
    
    Clearly need to explicitly write temperature into the simulate method in
    the future.
    """
    # Rates
    k1 = 0.01 #disaggregation rate
    k2 = 0.1 #chaperone degradation rate
    k3 = 0.00001 #dimerization rate
    k4 = 0.01 #heat induced chaperone production rate
    k5 = 0.01 #heat inactivation rate of assembler
    T1 = 200
    T2 = 220
    # Species
    A = Species("A", 100)
    AA = Species("AA", 0)
    iAA = Species("iAA", 0)
    C = Species("C", 10)
    # Temperature independent reactions
    disagg = Reactivation("Disagg", [iAA, C], [A, C], k1)
    deg = UniDeg("C Degredation", [C], [None], k2)
    # Simulation and Temperature-Dependent Reaction
    # Temperature ramp = 300, 320, 300
    nuc = Temp_Dimerization("Nucleation", [A], [AA], k3, T1)
    hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], k4, T1)
    inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], k5, T1)
    sp_list = [A, AA, iAA, C]
    rxn_list= [nuc, inactivation, disagg, hip, deg]
    system = Network(sp_list, rxn_list)
    x = system.simulate(0, 20, "None")
    #nuc = Temp_Dimerization("Nucleation", [A], [AA], k3, 30)
    #hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], k4, T2)
    #inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], k5, T2)
    #y = system.simulate(x[-1,0], 50, "None")
    #nuc = Temp_Dimerization("Nucleation", [A], [AA], k3, 10)
    #hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], k4, T1)
    #inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], k5, T1)
    #z = system.simulate(y[-1,0], 70, "None")
    
    #final = np.vstack((x, y, z))
    #x2 = [i[-1,0] for i in [x, y, z]]
    #y2 = [T1, T2, T1]
   
    fig, axis = plt.subplots(figsize=(10,10)) 
    for i in range(1,len(sp_list)+1):
        axis.step(x[:,0], x[:,i], label=sp_list[i-1].name)
    plt.legend(loc=0)
    plt.xlim(0,x[-1,0])
    plt.xlabel("Time")
    plt.ylabel("Molecular species count")
    #axis2 = axis.twinx()
    #axis2.step(x2,y2, c='darkgray')
    #plt.ylim(T1,T2)
    #plt.fill_between([x2[0], x2[1]], [220,220], alpha=0.5, color='darkgray')
    #plt.ylabel("Temperature (T)")
    #plt.savefig("reactivation_plot.pdf")
    plt.show()
Пример #3
0
def main():
    """Generate and simulate a model of lemmings approaching and jumping off
    a cliff.
    """
    L = Species("Lemming", 0)
    arrival = ConstInduction("Induction", None, [L], 1.0)
    jump = UniDeg("Degredation", [L], None, 0.1)
    cliff = Network([L], [arrival, jump])
    x = cliff.simulate(0, 200, "dummy_file2.dat")
    y = x[:,1]
    print "Mean: %f, Mean/Variance: %f \n (Poisson mean/var = 1)" % (np.mean(y), np.mean(y)/np.var(y))
    plt.subplot(121)
    plt.step(x[:,0], y)
    plt.title("Lemmings vs. time")
    plt.xlabel("Time (s)")
    plt.ylabel("Number of Lemmings")
    plt.subplot(122)
    plt.title("Count distribution")
    plt.hist(y, normed=True)
    plt.xlabel("Lemming population")
    plt.show()