def main(): """Simulate temperature dependent aggregation and disaggregation.""" # Rates and Temperatures k1 = 0.01 # disaggregation rate k2 = 0.1 # chaperone degradation rate k3 = 0.0001 # dimerization rate k4 = 0.05 # heat induced chaperone production rate k5 = 0.001 # heat inactivation rate of assembler # temp_fxn = [(20,315), (80,298)] temp_fxn = [(1, 298)] # Species A = Species("A", 100) AA = Species("AA", 0) iAA = Species("iAA", 0) C = Species("C", 10) # Temperature independent reactions disagg = MonomerReactivation("Disagg", [iAA, C], [A, C], None, k1) deg = UniDeg("C Degredation", [C], [None], None, k2) # Simulation and Temperature-Dependent Reaction nuc = Temp_Dimerization("Dimerization", [A], [AA], None, k3) hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], None, k4) inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], None, k5) sp_list = [A, AA, iAA, C] rxn_list = [inactivation, disagg, hip, deg, nuc] system = Network(sp_list, rxn_list) x = system.simulate(0, 70, temp_fxn, "None") # x2 = [i[-1,0] for i in [x, y, z]] # y2 = [T1, T2, T1] colors = ["b", "g", "r", "c"] fig, axis = plt.subplots(figsize=(7, 7)) for i in range(2, len(sp_list) + 2): axis.step(x[:, 0], x[:, i], label=sp_list[i - 2].name, c=colors[i - 2]) plt.legend(loc=0) plt.xlim(0, x[-1, 0]) plt.xlabel("Time") plt.ylabel("Molecular species count") # plt.ylim(0,500) # axis2 = axis.twinx() # axis2.step(x2,y2, c='darkgray') # plt.ylim(T1,T2) # plt.fill_between([x2[0], x2[1]], [220,220], alpha=0.5, color='darkgray') # plt.ylabel("Temperature (T)") # plt.savefig("reactivation_p1(wsqrt).pdf") plt.show() print np.mean(x[:, 1])
def main(): """Simulate temperature dependent aggregation and disaggregation.""" # Rates and Temperatures k1 = 0.01 #disaggregation rate k2 = 0.1 #chaperone degradation rate k3 = 0.0001 #dimerization rate k4 = 0.05 #heat induced chaperone production rate k5 = 0.001 #heat inactivation rate of assembler #temp_fxn = [(20,315), (80,298)] temp_fxn = [(1,298)] # Species A = Species("A", 100) AA = Species("AA", 0) iAA = Species("iAA", 0) C = Species("C", 10) # Temperature independent reactions disagg = MonomerReactivation("Disagg", [iAA, C], [A, C], None, k1) deg = UniDeg("C Degredation", [C], [None], None, k2) # Simulation and Temperature-Dependent Reaction nuc = Temp_Dimerization("Dimerization", [A], [AA], None, k3) hip = HeatInducedProduction("Heat Induced Production", [iAA], [C], None, k4) inactivation = HeatInducedInactivation("Inactivation", [AA], [iAA], None, k5) sp_list = [A, AA, iAA, C] rxn_list= [inactivation, disagg, hip, deg, nuc] system = Network(sp_list, rxn_list) x = system.simulate(0, 70, temp_fxn, "None") #x2 = [i[-1,0] for i in [x, y, z]] #y2 = [T1, T2, T1] colors = ['b','g','r','c'] fig, axis = plt.subplots(figsize=(7,7)) for i in range(2,len(sp_list)+2): axis.step(x[:,0], x[:,i], label=sp_list[i-2].name, c=colors[i-2]) plt.legend(loc=0) plt.xlim(0,x[-1,0]) plt.xlabel("Time") plt.ylabel("Molecular species count") #plt.ylim(0,500) #axis2 = axis.twinx() #axis2.step(x2,y2, c='darkgray') #plt.ylim(T1,T2) #plt.fill_between([x2[0], x2[1]], [220,220], alpha=0.5, color='darkgray') #plt.ylabel("Temperature (T)") #plt.savefig("reactivation_p1(wsqrt).pdf") plt.show() print np.mean(x[:,1])
def main(): """Generate and simulate a model of lemmings approaching and jumping off a cliff. Now with adjustable temperature! """ # Input species and reactions L = Species("Lemming", 0) arrival = TConstInduction("Induction", None, [L], -1e-22, 0.1) jump = UniDeg("Degredation", [L], None, -1e-22, 0.1) temp_fxn = [(100,350), (150,298)] #temp_fxn = [(1,298)] cliff = Network([L], [arrival, jump]) # Simulate and parse data x = cliff.simulate(0, 200, temp_fxn, "dummy_file2.dat") y = x[:,2] y1 = [x[i,2] for i in range(len(x)) if x[i,0] > 50 and x[i,0] < 100] y2 = [x[i,2] for i in range(len(x)) if x[i,0] > 100 and x[i,0] < 150] y3 = [x[i,2] for i in range(len(x)) if x[i,0] > 150] #print len(y1), len(y2), len(y3), len(x) #print "Mean1: %f, Mean1/Var1: %f" % (np.mean(y1), np.mean(y1)/np.var(y1)) #print "Mean2: %f, Mean2/Var2: %f" % (np.mean(y2), np.mean(y2)/np.var(y2)) #print "Mean3: %f, Mean3/Var3: %f" % (np.mean(y3), np.mean(y3)/np.var(y3)) #plotting function -> plots temperature over timecourse w/ shared x axis # Generate plots fig = plt.figure(figsize=(8, 8)) gs = gridspec.GridSpec(2, 1, height_ratios=(1,3)) axis1 = plt.subplot(gs[1]) axis1.step(x[:,0], y) plt.xlabel("Time (s)") axis1.set_ylabel("Lemmings") axis0 = plt.subplot(gs[0], sharex=axis1) axis0.step(x[:,0],x[:,1], c='r') axis0.set_ylabel("Temperature") plt.setp(axis0.get_xticklabels(), visible=False) plt.tight_layout() plt.show()
def main(): """Generate and simulate a model of lemmings approaching and jumping off a cliff. Now with adjustable temperature! """ # Input species and reactions L = Species("Lemming", 0) arrival = TConstInduction("Induction", None, [L], -1e-22, 0.1) jump = UniDeg("Degredation", [L], None, -1e-22, 0.1) temp_fxn = [(100, 350), (150, 298)] #temp_fxn = [(1,298)] cliff = Network([L], [arrival, jump]) # Simulate and parse data x = cliff.simulate(0, 200, temp_fxn, "dummy_file2.dat") y = x[:, 2] y1 = [x[i, 2] for i in range(len(x)) if x[i, 0] > 50 and x[i, 0] < 100] y2 = [x[i, 2] for i in range(len(x)) if x[i, 0] > 100 and x[i, 0] < 150] y3 = [x[i, 2] for i in range(len(x)) if x[i, 0] > 150] #print len(y1), len(y2), len(y3), len(x) #print "Mean1: %f, Mean1/Var1: %f" % (np.mean(y1), np.mean(y1)/np.var(y1)) #print "Mean2: %f, Mean2/Var2: %f" % (np.mean(y2), np.mean(y2)/np.var(y2)) #print "Mean3: %f, Mean3/Var3: %f" % (np.mean(y3), np.mean(y3)/np.var(y3)) #plotting function -> plots temperature over timecourse w/ shared x axis # Generate plots fig = plt.figure(figsize=(8, 8)) gs = gridspec.GridSpec(2, 1, height_ratios=(1, 3)) axis1 = plt.subplot(gs[1]) axis1.step(x[:, 0], y) plt.xlabel("Time (s)") axis1.set_ylabel("Lemmings") axis0 = plt.subplot(gs[0], sharex=axis1) axis0.step(x[:, 0], x[:, 1], c='r') axis0.set_ylabel("Temperature") plt.setp(axis0.get_xticklabels(), visible=False) plt.tight_layout() plt.show()
def main(): # Rates k1 = .1 # Deactivation k2 = .1 # Reactivation k3 = 1 # Protein synthesis k4 = .1 # Protein degradation #temp_fxn = [(0,5), (200, 50), (600, 5)] temp_fxn = [(0, 1)] # Species Pab1 = Species("Pab1", 100) C = Species("Chaperone", 50) iPab1 = Species("iPab1", 0) # Reactions aggregation = Pab1Deactivation("agg", [Pab1], [iPab1], None, k1) disaggregation = Pab1Reactivation("disagg", [iPab1, C], [Pab1, C], None, k2) Ctranslation = CProduction("C Translation", [Pab1], [C], None, k3) Cdeg = UniDeg("C Degradation", [C], [], None, k4) # System species_list = [Pab1, C, iPab1] rxn_list = [aggregation, disaggregation, Ctranslation, Cdeg] system = Network(species_list, rxn_list) # Simulation x = system.simulate(0, 100, temp_fxn, None) # Plots colors = ['royalblue', 'gold', 'firebrick'] fig, (axis2, axis) = plt.subplots(2, 1, figsize=(7,7)) for i in range(2,len(species_list)+2): axis.plot(x[:,0], x[:,i], label=species_list[i-2].name, c=colors[i-2], linewidth=3) axis.legend(loc=0) axis.set_xlim(0,x[-1,0]+5) axis.set_xlabel("Time") axis.set_ylabel("Molecular species count") axis2.step(x[:, 0], x[:, 1], linewidth=3) axis2.set_xlabel("Time (s)") axis2.set_ylabel("Temperature") plt.tight_layout() plt.show()