Пример #1
0
def removeDC_01(pipeline, name):
    #
    # This test removes the DC component from a stream of ones (i.e., the result should be zero)
    #

    rate = 2048  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 50.0  # seconds
    DC = 1.0
    wave = 0
    volume = 0.0

    #
    # build pipeline
    #

    src = test_common.test_src(pipeline,
                               buffer_length=buffer_length,
                               rate=16384,
                               test_duration=test_duration,
                               wave=wave,
                               width=64)
    head = pipeparts.mkaudioamplify(pipeline, src, volume)
    head = pipeparts.mkgeneric(pipeline, head, "lal_add_constant", value=DC)
    head = calibration_parts.mkresample(
        pipeline, head, 5, True, "audio/x-raw,format=F64LE,rate=%d" % rate)
    head = calibration_parts.removeDC(
        pipeline, head, "audio/x-raw,format=F64LE,rate=%d" % rate)
    pipeparts.mknxydumpsink(pipeline, head, "%s_out.dump" % name)

    #
    # done
    #

    return pipeline
Пример #2
0
def line_separation_test_01(pipeline, name, line_sep=0.5):
    #
    # This test measures and plots the amount of contamination a calibration line adds to the result of demodulating at a nearby frequency as a function of frequency separation.
    #

    rate = 1000  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 10.0  # seconds

    #
    # build pipeline
    #

    noise = test_common.test_src(pipeline,
                                 rate=16384,
                                 test_duration=1000,
                                 wave=5,
                                 src_suffix='0')
    noise = pipeparts.mkaudioamplify(pipeline, noise, 2.5)
    noise = pipeparts.mktee(pipeline, noise)

    signal = test_common.test_src(pipeline,
                                  rate=16384,
                                  test_duration=1000,
                                  wave=0,
                                  freq=16.3 + line_sep,
                                  src_suffix='1')
    noisy_signal = calibration_parts.mkadder(
        pipeline, calibration_parts.list_srcs(pipeline, signal, noise))

    demod_noise = calibration_parts.demodulate(pipeline, noise, 16.3, True, 16,
                                               20, 0)
    demod_noise = pipeparts.mkgeneric(pipeline, demod_noise, "cabs")
    rms_noise = calibration_parts.compute_rms(pipeline,
                                              demod_noise,
                                              16,
                                              900,
                                              filter_latency=0,
                                              rate_out=1)
    pipeparts.mknxydumpsink(pipeline, rms_noise, "rms_noise.txt")

    demod_signal = calibration_parts.demodulate(pipeline, noisy_signal, 16.3,
                                                True, 16, 20, 0)
    demod_signal = pipeparts.mkgeneric(pipeline, demod_signal, "cabs")
    rms_signal = calibration_parts.compute_rms(pipeline,
                                               demod_signal,
                                               16,
                                               900,
                                               filter_latency=0,
                                               rate_out=1)
    pipeparts.mknxydumpsink(pipeline, rms_signal, "rms_signal.txt")

    #
    # done
    #

    return pipeline
Пример #3
0
def lal_tdwhiten_01(pipeline, name):

	#
	# This test passes ones through lal_tdwhiten
	#

	src = test_common.test_src(pipeline, buffer_length = buffer_length, wave = 0, freq = 0, rate = rate, test_duration = test_duration, width = 64)
	head = pipeparts.mkaudioamplify(pipeline, src, 0.0)
	head = pipeparts.mkgeneric(pipeline, head, "lal_add_constant", value = 1.0)
	head = pipeparts.mktee(pipeline, head)
	pipeparts.mknxydumpsink(pipeline, head, "%s_in.txt" % name)
	head = pipeparts.mkgeneric(pipeline, head, "lal_tdwhiten", kernel = fir_filt[::-1], latency = latency)
	pipeparts.mknxydumpsink(pipeline, head, "%s_out.txt" % name)

	#
	# done
	#

	return pipeline
Пример #4
0
def lal_complexfirbank_01(pipeline, name):

	#
	# This test passes ones through lal_complexfirbank
	#

	src = test_common.test_src(pipeline, buffer_length = buffer_length, wave = 0, freq = 0, rate = rate, test_duration = test_duration, width = 64)
	head = pipeparts.mkaudioamplify(pipeline, src, 0.0)
	head = pipeparts.mkgeneric(pipeline, head, "lal_add_constant", value = 1.0)
	head = pipeparts.mktee(pipeline, head)
	pipeparts.mknxydumpsink(pipeline, head, "%s_in.txt" % name)
	head = calibration_parts.mkcomplexfirbank(pipeline, head, latency = latency, fir_matrix = [fir_filt], time_domain = True)
	pipeparts.mknxydumpsink(pipeline, head, "%s_out.txt" % name)

	#
	# done
	#
	
	return pipeline
Пример #5
0
def lal_demodulate_03(pipeline, name):
    #
    # This test checks sensitivity of the demodulation process used in the calibration pipeline to small changes in line frequency
    #

    rate_in = 16384  # Hz
    rate_out = 16  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 1000  # seconds

    #
    # build pipeline
    #

    # Make fake data with a signal
    src = test_common.test_src(pipeline,
                               buffer_length=buffer_length,
                               rate=rate_in,
                               test_duration=test_duration,
                               wave=0,
                               volume=1.0,
                               freq=37.00,
                               width=64)

    # Demodulate it
    head = calibration_parts.demodulate(pipeline, src, 37.10, True, rate_out,
                                        20, 0.0)

    # Smoothing
    #	head = pipeparts.mkgeneric(pipeline, head, "lal_smoothkappas", array_size = 128 * rate_out, avg_array_size = 10 * rate_out)

    # Measure the amplitude of the result
    head = pipeparts.mkgeneric(pipeline, head, "cabs")
    head = pipeparts.mkaudioamplify(pipeline, head, 2.0)
    pipeparts.mknxydumpsink(pipeline, head, "%s_out.dump" % name)

    #
    # done
    #

    return pipeline
Пример #6
0
def pyfilter_test_01(pipeline, name):
    #
    # This test removes the DC component from a stream of ones (i.e., the result should be zero)
    #

    rate = 16384  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 10.0  # seconds
    DC = 1.0
    wave = 0
    freq = 90
    volume = 1.0

    #
    # build pipeline
    #

    src = test_common.test_src(pipeline,
                               buffer_length=buffer_length,
                               rate=rate,
                               freq=freq,
                               test_duration=test_duration,
                               wave=wave,
                               width=64)
    head = pipeparts.mkaudioamplify(pipeline, src, volume)
    head = pipeparts.mkgeneric(pipeline, head, "lal_add_constant", value=DC)
    head = pipeparts.mktee(pipeline, head)
    pipeparts.mknxydumpsink(pipeline, head, "%s_in.txt" % name)
    head = calibration_parts.bandstop(pipeline, head, rate)
    pipeparts.mknxydumpsink(pipeline, head, "%s_out.txt" % name)

    #
    # done
    #

    return pipeline
def pcal2darm(pipeline, name):

    # Get pcal from the raw frames
    raw_data = pipeparts.mklalcachesrc(pipeline,
                                       location=options.raw_frame_cache,
                                       cache_dsc_regex=ifo)
    raw_data = pipeparts.mkframecppchanneldemux(
        pipeline,
        raw_data,
        do_file_checksum=False,
        skip_bad_files=True,
        channel_list=list(map("%s:%s".__mod__, channel_list)))
    pcal = calibration_parts.hook_up(pipeline, raw_data,
                                     options.pcal_channel_name, ifo, 1.0)
    pcal = calibration_parts.caps_and_progress(
        pipeline, pcal,
        "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
        "pcal")
    pcal = pipeparts.mktee(pipeline, pcal)

    # Demodulate the pcal channel at the lines of interest
    for i in range(0, len(frequencies)):
        demodulated_pcal = calibration_parts.demodulate(
            pipeline,
            pcal,
            frequencies[i],
            True,
            rate_out,
            filter_time,
            0.5,
            prefactor_real=pcal_corrections[2 * i],
            prefactor_imag=pcal_corrections[2 * i + 1])
        demodulated_pcal_list.append(
            pipeparts.mktee(pipeline, demodulated_pcal))

    # Check if we are taking pcal-to-darm ratios for CALCS data
    for channel, label in zip(calcs_channels, labels[0:len(calcs_channels)]):
        calcs_deltal = calibration_parts.hook_up(pipeline, raw_data, channel,
                                                 ifo, 1.0)
        calcs_deltal = calibration_parts.caps_and_progress(
            pipeline, calcs_deltal,
            "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
            label)
        calcs_deltal = pipeparts.mktee(pipeline, calcs_deltal)
        for i in range(0, len(frequencies)):
            # Demodulate DELTAL_EXTERNAL at each line
            demodulated_calcs_deltal = calibration_parts.demodulate(
                pipeline, calcs_deltal, frequencies[i], True, rate_out,
                filter_time, 0.5)
            # Take ratio \DeltaL(f) / pcal(f)
            deltaL_over_pcal = calibration_parts.complex_division(
                pipeline, demodulated_calcs_deltaL, demodulated_pcal_list[i])
            # Take a running average
            deltaL_over_pcal = pipeparts.mkgeneric(
                pipeline,
                deltaL_over_pcal,
                "lal_smoothkappas",
                array_size=1,
                avg_array_size=int(rate_out * average_time))
            # Write to file
            pipeparts.mknxydumpsink(
                pipeline, deltaL_over_pcal,
                "%s_%s_over_%s_at_line%d.txt" % (ifo, label.replace(
                    ' ', '_'), options.pcal_channel_name, i + 1))

    # Check if we are taking pcal-to-darm ratios for gstlal calibrated data
    if options.gstlal_channel_list is not None:
        cache_num = 0
        for cache, channel, label in zip(
                gstlal_frame_cache_list, gstlal_channels,
                labels[len(calcs_channels):len(calcs_channels) +
                       len(gstlal_channels)]):
            # Get gstlal channels from the gstlal frames
            hoft_data = pipeparts.mklalcachesrc(pipeline,
                                                location=cache,
                                                cache_dsc_regex=ifo)
            hoft_data = pipeparts.mkframecppchanneldemux(
                pipeline,
                hoft_data,
                do_file_checksum=False,
                skip_bad_files=True,
                channel_list=list(map("%s:%s".__mod__, channel_list)))
            hoft = calibration_parts.hook_up(pipeline,
                                             hoft_data,
                                             channel,
                                             ifo,
                                             1.0,
                                             element_name_suffix="_%d" %
                                             cache_num)
            cache_num = cache_num + 1
            hoft = calibration_parts.caps_and_progress(
                pipeline, hoft,
                "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
                label)
            deltal = pipeparts.mkaudioamplify(pipeline, hoft, arm_length)
            deltal = pipeparts.mktee(pipeline, deltal)
            for i in range(0, len(frequencies)):
                # Demodulate \DeltaL at each line
                demodulated_deltal = calibration_parts.demodulate(
                    pipeline, deltal, frequencies[i], True, rate_out,
                    filter_time, 0.5)
                # Take ratio \DeltaL(f) / pcal(f)
                deltaL_over_pcal = calibration_parts.complex_division(
                    pipeline, demodulated_deltal, demodulated_pcal_list[i])
                # Take a running average
                deltaL_over_pcal = pipeparts.mkgeneric(
                    pipeline,
                    deltaL_over_pcal,
                    "lal_smoothkappas",
                    array_size=1,
                    avg_array_size=int(rate_out * average_time))
                # Find the magnitude
                deltaL_over_pcal = pipeparts.mktee(pipeline, deltaL_over_pcal)
                magnitude = pipeparts.mkgeneric(pipeline, deltaL_over_pcal,
                                                "cabs")
                # Find the phase
                phase = pipeparts.mkgeneric(pipeline, deltaL_over_pcal, "carg")
                phase = pipeparts.mkaudioamplify(pipeline, phase,
                                                 180.0 / numpy.pi)
                # Interleave
                magnitude_and_phase = calibration_parts.mkinterleave(
                    pipeline, [magnitude, phase])
                # Write to file
                pipeparts.mknxydumpsink(
                    pipeline, magnitude_and_phase,
                    "%s_%s_over_%s_at_%0.1fHz_%d.txt" %
                    (ifo, label.replace(' ', '_'), options.pcal_channel_name,
                     frequencies[i], options.gps_start_time))

        # Check of we are reading in kappa channels
        if options.kappa_channel_list is not None:
            # Get gstlal channels from the gstlal frames
            kappa_data = pipeparts.mklalcachesrc(
                pipeline,
                location=gstlal_frame_cache_list[0],
                cache_dsc_regex=ifo)
            kappa_data = pipeparts.mkframecppchanneldemux(
                pipeline,
                kappa_data,
                do_file_checksum=False,
                skip_bad_files=True,
                channel_list=list(map("%s:%s".__mod__, channel_list)))
            for i in range(len(kappa_channels) // 2):
                kappa_real = calibration_parts.hook_up(
                    pipeline,
                    kappa_data,
                    kappa_channels[2 * i],
                    ifo,
                    1.0,
                    element_name_suffix="_%d" % (2 * i))
                kappa_imag = calibration_parts.hook_up(
                    pipeline,
                    kappa_data,
                    kappa_channels[2 * i + 1],
                    ifo,
                    1.0,
                    element_name_suffix="_%d" % (2 * i + 1))
                kappa_real = calibration_parts.caps_and_progress(
                    pipeline, kappa_real,
                    "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
                    kappa_channels[2 * i])
                kappa_imag = calibration_parts.caps_and_progress(
                    pipeline, kappa_imag,
                    "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
                    kappa_channels[2 * i + 1])
                kappa = calibration_parts.merge_into_complex(
                    pipeline, kappa_real, kappa_imag)
                phase_angle = pipeparts.mkgeneric(pipeline, kappa, "carg")

                actuation_stage = 'UNKNOWN'
                act_freq = 17.0  # A guess...
                if 'TST' in kappa_channels[2 * i]:
                    actuation_stage = 'T'
                    act_freq = float(filters["ktst_esd_line_freq"])
                elif 'PUM' in kappa_channels[2 * i]:
                    actuation_stage = 'P'
                    act_freq = float(filters["pum_act_line_freq"])
                elif 'UIM' in kappa_channels[2 * i]:
                    actuation_stage = 'U'
                    act_freq = float(filters["uim_act_line_freq"])
                elif 'PU' in kappa_channels[2 * i]:
                    actuation_stage = 'PU'
                    act_freq = float(filters["ka_esd_line_freq"])

                actuation_stages.append(actuation_stage)

                tau = pipeparts.mkaudioamplify(
                    pipeline, phase_angle,
                    1000000.0 / 2.0 / numpy.pi / act_freq)

                pipeparts.mknxydumpsink(
                    pipeline, tau, "%s_%s_%d.txt" %
                    (ifo, actuation_stage, options.gps_start_time))

    #
    # done
    #

    return pipeline
Пример #8
0
def lal_transferfunction_01(pipeline, name):

    #
    # This test adds various noise into a stream and uses lal_transferfunction to remove it
    #

    rate = 16384  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 3000.0  # seconds
    width = 64  # bits

    #
    # build pipeline
    #

    hoft = test_common.test_src(pipeline,
                                buffer_length=buffer_length,
                                wave=5,
                                volume=0.001,
                                rate=rate,
                                test_duration=test_duration,
                                width=width,
                                verbose=False)
    hoft = pipeparts.mktee(pipeline, hoft)

    common_noise = test_common.test_src(pipeline,
                                        buffer_length=buffer_length,
                                        wave=5,
                                        freq=512,
                                        volume=1,
                                        rate=rate,
                                        test_duration=test_duration,
                                        width=width,
                                        verbose=False)
    common_noise = pipeparts.mktee(pipeline, common_noise)

    noise1 = test_common.test_src(pipeline,
                                  buffer_length=buffer_length,
                                  wave=5,
                                  freq=512,
                                  volume=1,
                                  rate=rate,
                                  test_duration=test_duration,
                                  width=width,
                                  verbose=False)
    noise1 = calibration_parts.mkadder(
        pipeline, calibration_parts.list_srcs(pipeline, common_noise, noise1))
    noise1 = pipeparts.mktee(pipeline, noise1)
    noise1_for_cleaning = pipeparts.mkgeneric(pipeline, noise1, "identity")
    hoft_noise1 = pipeparts.mkshift(pipeline, noise1, shift=00000000)
    hoft_noise1 = pipeparts.mkaudioamplify(pipeline, hoft_noise1, 2)
    hoft_noise1 = pipeparts.mktee(pipeline, hoft_noise1)

    noise2 = test_common.test_src(pipeline,
                                  buffer_length=buffer_length,
                                  wave=5,
                                  freq=1024,
                                  volume=1,
                                  rate=rate,
                                  test_duration=test_duration,
                                  width=width,
                                  verbose=False)
    noise2 = calibration_parts.mkadder(
        pipeline, calibration_parts.list_srcs(pipeline, common_noise, noise2))
    noise2 = pipeparts.mktee(pipeline, noise2)
    noise2_for_cleaning = pipeparts.mkgeneric(pipeline, noise2, "identity")
    hoft_noise2 = pipeparts.mkshift(pipeline, noise2, shift=00000)
    hoft_noise2 = pipeparts.mkaudioamplify(pipeline, hoft_noise2, 3)
    hoft_noise2 = pipeparts.mktee(pipeline, hoft_noise2)

    noisy_hoft = calibration_parts.mkadder(
        pipeline,
        calibration_parts.list_srcs(pipeline, hoft, hoft_noise1, hoft_noise2))
    noisy_hoft = pipeparts.mktee(pipeline, noisy_hoft)

    clean_hoft = calibration_parts.clean_data(
        pipeline,
        calibration_parts.list_srcs(pipeline, noisy_hoft, noise1_for_cleaning,
                                    noise2_for_cleaning), rate / 4, rate / 8,
        16384, test_duration * rate)
    clean_hoft = pipeparts.mktee(pipeline, clean_hoft)

    #	hoft_inv = pipeparts.mkpow(pipeline, hoft, exponent = -1.0)
    #	clean_hoft_over_hoft = calibration_parts.mkmultiplier(pipeline, calibration_parts.list_srcs(pipeline, hoft_inv, clean_hoft))
    #	pipeparts.mknxydumpsink(pipeline, clean_hoft_over_hoft, "%s_clean_hoft_over_hoft.txt" % name)

    pipeparts.mknxydumpsink(pipeline, hoft, "%s_hoft.txt" % name)
    pipeparts.mknxydumpsink(pipeline, hoft_noise1, "%s_hoft_noise1.txt" % name)
    pipeparts.mknxydumpsink(pipeline, hoft_noise2, "%s_hoft_noise2.txt" % name)
    pipeparts.mknxydumpsink(pipeline, noisy_hoft, "%s_noisy_hoft.txt" % name)
    pipeparts.mknxydumpsink(pipeline, clean_hoft, "%s_clean_hoft.txt" % name)

    #
    # done
    #

    return pipeline
Пример #9
0
def lal_transferfunction_03(pipeline, name):

    #
    # This test produces three-channel data to be read into lal_transferfunction
    #

    rate = 16384  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 50.0  # seconds
    width = 64  # bits
    freq = 512  # Hz
    num_witnesses = 2
    witness_factor = 0.5  # Ratio of amplitudes of witness / signal

    #
    # build pipeline
    #

    hoft = test_common.test_src(pipeline,
                                buffer_length=buffer_length,
                                wave=5,
                                volume=1,
                                freq=freq,
                                channels=1,
                                rate=rate,
                                test_duration=test_duration,
                                width=width,
                                verbose=False)
    hoft = pipeparts.mktee(pipeline, hoft)

    noise = []
    for i in range(0, num_witnesses):
        difference = test_common.test_src(pipeline,
                                          buffer_length=buffer_length,
                                          wave=5,
                                          volume=0.001,
                                          channels=1,
                                          rate=rate,
                                          test_duration=test_duration,
                                          width=width,
                                          verbose=False)
        noisy_hoft = calibration_parts.mkadder(
            pipeline,
            calibration_parts.list_srcs(
                pipeline,
                pipeparts.mkaudioamplify(pipeline, hoft, witness_factor),
                difference))
        noisy_hoft = pipeparts.mkprogressreport(pipeline, noisy_hoft,
                                                "noisy_hoft_%d" % i)
        noise.append(noisy_hoft)

    clean_data = calibration_parts.clean_data(pipeline,
                                              hoft,
                                              rate,
                                              noise,
                                              rate,
                                              2 * rate,
                                              rate,
                                              10,
                                              rate * 1000,
                                              rate,
                                              4,
                                              filename="tfs.txt")
    pipeparts.mknxydumpsink(pipeline, hoft, "%s_hoft.txt" % name)
    pipeparts.mknxydumpsink(pipeline, clean_data, "%s_out.txt" % name)

    return pipeline
Пример #10
0
def plot_transfer_function(pipeline, name):
    # Get the data from the denominator frames
    denominator = pipeparts.mklalcachesrc(
        pipeline,
        location=options.denominator_frame_cache,
        cache_dsc_regex=ifo)
    denominator = pipeparts.mkframecppchanneldemux(
        pipeline,
        denominator,
        do_file_checksum=False,
        skip_bad_files=True,
        channel_list=list(map("%s:%s".__mod__, channel_list)))
    denominator = calibration_parts.hook_up(pipeline, denominator,
                                            options.denominator_channel_name,
                                            ifo, 1.0)
    denominator = calibration_parts.caps_and_progress(
        pipeline, denominator, "audio/x-raw,format=F64LE", "denominator")
    denominator = calibration_parts.mkresample(pipeline, denominator, 5, False,
                                               int(sample_rate))
    if denominator_correction is not None:
        if numpy.size(filters[denominator_correction]) == 1:
            denominator = pipeparts.mkaudioamplify(
                pipeline, denominator, float(filters[denominator_correction]))
    denominator = pipeparts.mktee(pipeline, denominator)

    # Get the data from the numerator frames
    for i in range(0, len(labels)):
        numerator = pipeparts.mklalcachesrc(
            pipeline,
            location=numerator_frame_cache_list[i],
            cache_dsc_regex=ifo)
        numerator = pipeparts.mkframecppchanneldemux(
            pipeline,
            numerator,
            do_file_checksum=False,
            skip_bad_files=True,
            channel_list=list(map("%s:%s".__mod__, channel_list)))
        numerator = calibration_parts.hook_up(pipeline,
                                              numerator,
                                              numerator_channel_list[i],
                                              ifo,
                                              1.0,
                                              element_name_suffix="%d" % i)
        numerator = calibration_parts.caps_and_progress(
            pipeline, numerator, "audio/x-raw,format=F64LE", labels[i])
        numerator = calibration_parts.mkresample(pipeline, numerator, 5, False,
                                                 int(sample_rate))
        if numerator_correction is not None:
            if numerator_correction[i] is not None:
                if numpy.size(filters[numerator_correction[i]] == 1):
                    numerator = pipeparts.mkaudioamplify(
                        pipeline, numerator,
                        float(filters[numerator_correction[i]]))
        # Interleave the channels to make one stream
        channels = calibration_parts.mkinterleave(pipeline,
                                                  [numerator, denominator])
        # Send the data to lal_transferfunction to compute and write transfer functions
        pipeparts.mkgeneric(pipeline,
                            channels,
                            "lal_transferfunction",
                            fft_length=fft_length,
                            fft_overlap=fft_overlap,
                            num_ffts=num_ffts,
                            fir_length=td_tf_length,
                            use_median=True if options.use_median else False,
                            update_samples=1e15,
                            filename='%s_%s_over_%s_%d-%d.txt' %
                            (ifo, labels[i].replace(' ', '_').replace(
                                '/', 'over'), options.denominator_channel_name,
                             options.gps_start_time, data_duration))

    #
    # done
    #

    return pipeline
Пример #11
0
def rms_01(pipeline, name):

    #
    # This test passes a random series of integers through rms
    #

    rate_in = 2048  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 50.0  # seconds

    #
    # build pipeline
    #

    head = test_common.test_src(pipeline,
                                buffer_length=buffer_length,
                                rate=rate_in,
                                width=64,
                                test_duration=test_duration,
                                wave=5,
                                freq=0)
    white_noise = pipeparts.mktee(pipeline, head)
    white_noise_over10 = pipeparts.mkaudioamplify(pipeline, white_noise, 0.1)
    white_noise_bp100to150 = calibration_parts.bandpass(pipeline,
                                                        white_noise,
                                                        2048,
                                                        length=1.0,
                                                        f_low=100,
                                                        f_high=150)
    white_noise_bp250to300 = calibration_parts.bandpass(pipeline,
                                                        white_noise,
                                                        2048,
                                                        length=1.0,
                                                        f_low=250,
                                                        f_high=300)
    white_noise_bp450to500 = calibration_parts.bandpass(pipeline,
                                                        white_noise,
                                                        2048,
                                                        length=1.0,
                                                        f_low=450,
                                                        f_high=500)
    white_noise_bp400to500 = calibration_parts.bandpass(pipeline,
                                                        white_noise,
                                                        2048,
                                                        length=1.0,
                                                        f_low=400,
                                                        f_high=500)
    rms = calibration_parts.compute_rms(pipeline,
                                        white_noise,
                                        1024,
                                        1.0,
                                        f_min=100,
                                        f_max=500)
    rms_over10 = calibration_parts.compute_rms(pipeline,
                                               white_noise_over10,
                                               1024,
                                               1.0,
                                               f_min=100,
                                               f_max=500)
    rms_bp100to150 = calibration_parts.compute_rms(pipeline,
                                                   white_noise_bp100to150,
                                                   1024,
                                                   1.0,
                                                   f_min=100,
                                                   f_max=500)
    rms_bp250to300 = calibration_parts.compute_rms(pipeline,
                                                   white_noise_bp250to300,
                                                   1024,
                                                   1.0,
                                                   f_min=100,
                                                   f_max=500)
    rms_bp450to500 = calibration_parts.compute_rms(pipeline,
                                                   white_noise_bp450to500,
                                                   1024,
                                                   1.0,
                                                   f_min=100,
                                                   f_max=500)
    rms_bp400to500 = calibration_parts.compute_rms(pipeline,
                                                   white_noise_bp400to500,
                                                   1024,
                                                   1.0,
                                                   f_min=100,
                                                   f_max=500)
    pipeparts.mknxydumpsink(pipeline, rms, "rms.txt")
    pipeparts.mknxydumpsink(pipeline, rms_over10, "rms_over10.txt")
    pipeparts.mknxydumpsink(pipeline, rms_bp100to150, "rms_bp100to150.txt")
    pipeparts.mknxydumpsink(pipeline, rms_bp250to300, "rms_bp250to300.txt")
    pipeparts.mknxydumpsink(pipeline, rms_bp450to500, "rms_bp450to500.txt")
    pipeparts.mknxydumpsink(pipeline, rms_bp400to500, "rms_bp400to500.txt")

    #
    # done
    #

    return pipeline
Пример #12
0
def demod_ratio(pipeline, name):

    # Get denominator data from the raw frames
    denominator_data = pipeparts.mklalcachesrc(
        pipeline,
        location=options.denominator_frame_cache,
        cache_dsc_regex=ifo)
    denominator_data = pipeparts.mkframecppchanneldemux(
        pipeline,
        denominator_data,
        do_file_checksum=False,
        skip_bad_files=True,
        channel_list=list(map("%s:%s".__mod__, channel_list)))
    denominator = calibration_parts.hook_up(pipeline, denominator_data,
                                            options.denominator_channel_name,
                                            ifo, 1.0)
    denominator = calibration_parts.caps_and_progress(
        pipeline, denominator,
        "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
        "denominator")
    denominator = pipeparts.mktee(pipeline, denominator)

    # Get numerator data from the raw frames
    if not options.denominator_frame_cache == options.numerator_frame_cache:
        numerator_data = pipeparts.mklalcachesrc(
            pipeline,
            location=options.numerator_frame_cache,
            cache_dsc_regex=ifo)
        numerator_data = pipeparts.mkframecppchanneldemux(
            pipeline,
            numerator_data,
            do_file_checksum=False,
            skip_bad_files=True,
            channel_list=list(map("%s:%s".__mod__, channel_list)))
        numerator = calibration_parts.hook_up(pipeline, numerator_data,
                                              options.numerator_channel_name,
                                              ifo, 1.0)
    else:
        numerator = calibration_parts.hook_up(pipeline, denominator_data,
                                              options.numerator_channel_name,
                                              ifo, 1.0)
    numerator = calibration_parts.caps_and_progress(
        pipeline, numerator,
        "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
        "numerator")
    numerator = pipeparts.mktee(pipeline, numerator)

    # Demodulate numerator and denominator at each frequency, take ratios, and write to file
    for i in range(0, len(frequencies)):
        # Demodulate
        demodulated_denominator = calibration_parts.demodulate(
            pipeline, denominator, frequencies[i], True, rate_out, filter_time,
            0.5)
        demodulated_numerator = calibration_parts.demodulate(
            pipeline, numerator, frequencies[i], True, rate_out, filter_time,
            0.5)
        demodulated_numerator = pipeparts.mktee(pipeline,
                                                demodulated_numerator)
        demodulated_denominator = pipeparts.mktee(pipeline,
                                                  demodulated_denominator)
        # Take ratio
        ratio = calibration_parts.complex_division(pipeline,
                                                   demodulated_numerator,
                                                   demodulated_denominator)
        # Average
        ratio = pipeparts.mkgeneric(pipeline,
                                    ratio,
                                    "lal_smoothkappas",
                                    array_size=1,
                                    avg_array_size=int(rate_out *
                                                       average_time),
                                    filter_latency=1.0)
        # Find magnitude and phase
        ratio = pipeparts.mktee(pipeline, ratio)
        magnitude = pipeparts.mkgeneric(pipeline, ratio, "cabs")
        phase = pipeparts.mkgeneric(pipeline, ratio, "carg")
        phase = pipeparts.mkaudioamplify(pipeline, phase, 180.0 / numpy.pi)
        # Interleave
        magnitude_and_phase = calibration_parts.mkinterleave(
            pipeline, [magnitude, phase])
        # Write to file
        pipeparts.mknxydumpsink(
            pipeline, magnitude_and_phase, "%s_%s_over_%s_%0.1fHz.txt" %
            (ifo, options.numerator_channel_name,
             options.denominator_channel_name, frequencies[i]))

    #
    # done
    #

    return pipeline
Пример #13
0
def pcal2darm(pipeline, name):

    # Get pcal from the raw frames
    raw_data = pipeparts.mklalcachesrc(pipeline,
                                       location=options.raw_frame_cache,
                                       cache_dsc_regex=ifo)
    raw_data = pipeparts.mkframecppchanneldemux(
        pipeline,
        raw_data,
        do_file_checksum=False,
        skip_bad_files=True,
        channel_list=list(map("%s:%s".__mod__, channel_list)))
    pcal = calibration_parts.hook_up(pipeline, raw_data,
                                     options.pcal_channel_name, ifo, 1.0)
    pcal = calibration_parts.caps_and_progress(
        pipeline, pcal,
        "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
        "pcal")
    pcal = pipeparts.mktee(pipeline, pcal)

    # Demodulate the pcal channel at the lines of interest
    for i in range(0, len(frequencies)):
        demodulated_pcal = calibration_parts.demodulate(
            pipeline,
            pcal,
            frequencies[i],
            True,
            rate_out,
            filter_time,
            0.5,
            prefactor_real=pcal_corrections[2 * i],
            prefactor_imag=pcal_corrections[2 * i + 1])
        demodulated_pcal_list.append(
            pipeparts.mktee(pipeline, demodulated_pcal))

    # Check if we are taking pcal-to-darm ratios for CALCS data
    for channel, label in zip(calcs_channels, labels[0:len(calcs_channels)]):
        calcs_deltal = calibration_parts.hook_up(pipeline, raw_data, channel,
                                                 ifo, 1.0)
        calcs_deltal = calibration_parts.caps_and_progress(
            pipeline, calcs_deltal,
            "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
            label)
        calcs_deltal = pipeparts.mktee(pipeline, calcs_deltal)
        for i in range(0, len(frequencies)):
            # Demodulate DELTAL_EXTERNAL at each line
            demodulated_calcs_deltal = calibration_parts.demodulate(
                pipeline, calcs_deltal, frequencies[i], True, rate_out,
                filter_time, 0.5)
            # Take ratio \DeltaL(f) / pcal(f)
            deltaL_over_pcal = calibration_parts.complex_division(
                pipeline, demodulated_calcs_deltaL, demodulated_pcal_list[i])
            # Take a running average
            deltaL_over_pcal = pipeparts.mkgeneric(
                pipeline,
                deltaL_over_pcal,
                "lal_smoothkappas",
                array_size=1,
                avg_array_size=int(rate_out * average_time))
            # Write to file
            pipeparts.mknxydumpsink(
                pipeline, deltaL_over_pcal,
                "%s_%s_over_%s_at_line%d.txt" % (ifo, label.replace(
                    ' ', '_'), options.pcal_channel_name, i + 1))

    # Check if we are taking pcal-to-darm ratios for gstlal calibrated data
    if options.gstlal_channel_list is not None:
        cache_num = 0
        for cache, channel, label in zip(
                gstlal_frame_cache_list, gstlal_channels,
                labels[len(calcs_channels):len(channel_list)]):
            # Get gstlal channels from the gstlal frames
            hoft_data = pipeparts.mklalcachesrc(pipeline,
                                                location=cache,
                                                cache_dsc_regex=ifo)
            hoft_data = pipeparts.mkframecppchanneldemux(
                pipeline,
                hoft_data,
                do_file_checksum=False,
                skip_bad_files=True,
                channel_list=list(
                    map("%s:%s".__mod__, channel_list + DQ_channels)))
            hoft = calibration_parts.hook_up(pipeline,
                                             hoft_data,
                                             channel,
                                             ifo,
                                             1.0,
                                             element_name_suffix="_%d" %
                                             cache_num)
            hoft = calibration_parts.caps_and_progress(
                pipeline, hoft,
                "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
                label)
            deltal = pipeparts.mkaudioamplify(pipeline, hoft, arm_length)
            deltal = pipeparts.mktee(pipeline, deltal)

            # Get a DQ channel
            DQ_channel = "%sCALIB_STATE_VECTOR%s" % (chan_prefixes[cache_num],
                                                     chan_suffixes[cache_num])
            DQ = calibration_parts.hook_up(pipeline,
                                           hoft_data,
                                           DQ_channel,
                                           ifo,
                                           1.0,
                                           element_name_suffix="_%d" %
                                           cache_num)
            DQ = calibration_parts.caps_and_progress(
                pipeline, DQ,
                "audio/x-raw,format=U32LE,channels=1,channel-mask=(bitmask)0x0",
                "DQ_%s" % label)
            DQ = pipeparts.mkgeneric(pipeline,
                                     DQ,
                                     "lal_logicalundersample",
                                     required_on=1,
                                     status_out=1)
            DQ = pipeparts.mkcapsfilter(
                pipeline, DQ,
                "audio/x-raw,format=U32LE,rate=%d,channels=1,channel-mask=(bitmask)0x0"
                % rate_out)
            DQ = pipeparts.mkgeneric(
                pipeline,
                DQ,
                "lal_drop",
                drop_samples=int((7.0 + 0.5 * filter_time) * rate_out + 0.5))
            DQ = pipeparts.mktee(pipeline, DQ)

            for i in range(0, len(frequencies)):
                # Demodulate \DeltaL at each line
                demodulated_deltal = calibration_parts.demodulate(
                    pipeline, deltal, frequencies[i], True, rate_out,
                    filter_time, 0.5)
                # Take ratio \DeltaL(f) / pcal(f)
                deltaL_over_pcal = calibration_parts.complex_division(
                    pipeline, demodulated_deltal, demodulated_pcal_list[i])
                # Take a running average
                deltaL_over_pcal = pipeparts.mkgeneric(
                    pipeline,
                    deltaL_over_pcal,
                    "lal_smoothkappas",
                    array_size=1,
                    avg_array_size=int(rate_out * average_time))
                # Find the magnitude
                deltaL_over_pcal = pipeparts.mktee(pipeline, deltaL_over_pcal)
                magnitude = pipeparts.mkgeneric(pipeline, deltaL_over_pcal,
                                                "cabs")
                # Find the phase
                phase = pipeparts.mkgeneric(pipeline, deltaL_over_pcal, "carg")
                phase = pipeparts.mkaudioamplify(pipeline, phase,
                                                 180.0 / numpy.pi)
                # Interleave
                magnitude_and_phase = calibration_parts.mkinterleave(
                    pipeline, [magnitude, phase])
                # Gate with DQ channel
                magnitude_and_phase = calibration_parts.mkgate(
                    pipeline, magnitude_and_phase, DQ, 1)
                magnitude_and_phase = pipeparts.mkprogressreport(
                    pipeline,
                    magnitude_and_phase,
                    name="progress_sink_%s_%d" % (label, i))
                # Write to file
                pipeparts.mknxydumpsink(
                    pipeline, magnitude_and_phase,
                    "%s_%s_over_%s_at_%0.1fHz_%d.txt" %
                    (ifo, label.replace(' ', '_'), options.pcal_channel_name,
                     frequencies[i], options.gps_start_time))
            cache_num = cache_num + 1

    #
    # done
    #

    return pipeline
Пример #14
0
def single_pole_filter_test(pipeline, name, line_sep=0.5):

    rate = 16384  # Hz
    buffer_length = 1.0  # seconds
    test_duration = 1000  # seconds
    fcc_rate = 16  # Hz
    gain = 1.1
    fcc = 430  # Hz
    update_time = 20  # seconds

    #
    # build pipeline
    #

    # Make a source of fake data to act as input values for a gain and a zero
    gain_fcc_data = test_common.test_src(pipeline,
                                         rate=fcc_rate,
                                         test_duration=test_duration,
                                         wave=5,
                                         src_suffix="_gain_fcc_data")
    # Take to the power of 0 to make it a stream of ones
    gain_fcc_data = calibration_parts.mkpow(pipeline,
                                            gain_fcc_data,
                                            exponent=0.0)
    # Make a copy which we can use to make both the gain and the fcc data
    gain_fcc_data = pipeparts.mktee(pipeline, gain_fcc_data)
    # Make the gain data by multiplying ones by the gain
    gain_data = pipeparts.mkaudioamplify(pipeline, gain_fcc_data, gain)
    # Make the fcc data by multiplying ones by fcc
    fcc_data = pipeparts.mkaudioamplify(pipeline, gain_fcc_data, fcc)
    # Now, this needs to be used in the element lal_adaptivefirfilt to turn it into a FIR filter.
    # lal_adaptivefirfilt takes as inputs (in this order) zeros, poles, a complex factor containing gain and phase.
    # Type "$ gst-inspect-1.0 lal_adaptivefirfilt" for info about the element.
    # Each of the inputs must be a complex data stream, so we first must make these real streams complex
    gain_data = pipeparts.mktogglecomplex(
        pipeline,
        pipeparts.mkmatrixmixer(pipeline, gain_data, matrix=[[1.0, 0.0]]))
    fcc_data = pipeparts.mktogglecomplex(
        pipeline,
        pipeparts.mkmatrixmixer(pipeline, fcc_data, matrix=[[1.0, 0.0]]))
    # Now we must interleave these streams, since lal_adaptivefirfilt takes a single multi-channel stream of interleaved data.
    # The fcc data (the zero frequency) must come first so that it is channel 0; that way lal_adaptivefirfilt recognizes it as such.
    filter_data = calibration_parts.mkinterleave(pipeline,
                                                 [fcc_data, gain_data],
                                                 complex_data=True)
    # Finally, send the interleaved data to lal_adaptivefirfilt, which will make a FIR filter.
    # Note that it needs to know the number of zeros and poles.
    # update_samples tells it how often to send a new filter to the filtering element
    # minimize_filter_length must be True for it to use a 2-tap filter.  Otherwise, it makes a longer FIR filter using and iFFT from a frequency-domain model.
    # This will also write the filter coefficients to file.
    adaptive_invsens_filter = calibration_parts.mkadaptivefirfilt(
        pipeline,
        filter_data,
        update_samples=int(update_time * fcc_rate),
        average_samples=1,
        num_zeros=1,
        num_poles=0,
        filter_sample_rate=rate,
        minimize_filter_length=True,
        filename="%s_FIR_filter.txt" % name)

    # Now make time series source of white noise to be filtered (wave = 5 means white noise)
    in_signal = test_common.test_src(pipeline,
                                     rate=rate,
                                     test_duration=test_duration,
                                     wave=5,
                                     src_suffix="_in_signal")
    # Make a copy of input data so that we can write it to file
    in_signal = pipeparts.mktee(pipeline, in_signal)
    # Write input time series to file
    pipeparts.mknxydumpsink(pipeline, in_signal, "%s_in.txt" % name)
    # Filter the data using lal_tdwhiten, which handles smooth filter updates
    # The property "kernel" is the FIR filter we will update.  To start, give a trivial default value.
    # The "taper_length" is the number of samples over which to handle filter transitions.  It is set to be 1 second.
    out_signal = pipeparts.mkgeneric(pipeline,
                                     in_signal,
                                     "lal_tdwhiten",
                                     kernel=[0, 1],
                                     latency=0,
                                     taper_length=rate)
    # Hook up the adaptive filter from lal_adaptivefirfilt to lal_tdwhiten so that the filter gets updated
    adaptive_invsens_filter.connect("notify::adaptive-filter",
                                    calibration_parts.update_filter,
                                    out_signal, "adaptive_filter", "kernel")
    # Correct the 1/2-sample shift in timestamps by applying a linear-phase FIR filter
    # The last argument here (0.5) is the number of samples worth of timestamp advance to apply to the data.  You might want to try -0.5 as well, since I often get advances and delays mixed up.
    out_signal = calibration_parts.linear_phase_filter(pipeline, out_signal,
                                                       0.5)
    # Make a copy, so that we can write the time series to file and send it to lal_transferfunction
    out_signal = pipeparts.mktee(pipeline, out_signal)
    # Finally, write the output to file
    pipeparts.mknxydumpsink(pipeline, out_signal, "%s_out.txt" % name)

    # Now, take the input and output and compute a transfer function.
    # First, we need to interleave the data for use by lal_transferfunction. The numerator comes first
    tf_input = calibration_parts.mkinterleave(pipeline,
                                              [out_signal, in_signal])
    # Remove some initial samples in case they were filtered by the default dummy filter [0, 1]
    tf_input = calibration_parts.mkinsertgap(
        pipeline, tf_input,
        chop_length=Gst.SECOND * 50)  # Removing 50 s of initial data
    # Send to lal_transferfunction, which will compute the frequency-domain transfer function between the input and output data and write it to file
    calibration_parts.mktransferfunction(
        pipeline,
        tf_input,
        fft_length=16 * rate,
        fft_overlap=8 * rate,
        num_ffts=(test_duration - 50) / 8 - 3,
        use_median=True,
        update_samples=1e15,
        filename="%s_filter_transfer_function.txt" % name)

    # You could, for instance, compare this transfer function to what you expect, i.e., gain * (1 + i f / fcc), and plot the comparison in the frequency-domain.  I'm guessing there will be a fair amount of work involved in getting everything to work and getting the result correct.

    #
    # done
    #

    return pipeline
Пример #15
0
def act2darm(pipeline, name):

    # Get actuation injection channels from the raw frames
    act_inj_channels = []
    raw_data = pipeparts.mklalcachesrc(pipeline,
                                       location=options.raw_frame_cache,
                                       cache_dsc_regex=ifo)
    raw_data = pipeparts.mkframecppchanneldemux(
        pipeline,
        raw_data,
        do_file_checksum=False,
        skip_bad_files=True,
        channel_list=list(map("%s:%s".__mod__, channel_list)))
    for i in range(len(act_channels)):
        act_inj_channels.append(
            calibration_parts.hook_up(pipeline, raw_data, act_channels[i], ifo,
                                      1.0))
        act_inj_channels[i] = calibration_parts.caps_and_progress(
            pipeline, act_inj_channels[i],
            "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
            "act_inj_%d" % i)
        act_inj_channels[i] = pipeparts.mktee(pipeline, act_inj_channels[i])

    # Demodulate the actuation injection channels at the lines of interest
    for i in range(0, len(frequencies)):
        demodulated_act = calibration_parts.demodulate(
            pipeline,
            act_inj_channels[i],
            frequencies[i],
            True,
            rate_out,
            filter_time,
            0.5,
            prefactor_real=act_corrections[2 * i],
            prefactor_imag=act_corrections[2 * i + 1])
        demodulated_act_list.append(pipeparts.mktee(pipeline, demodulated_act))

    # Check if we are taking act-to-darm ratios for CALCS data
    for channel, label in zip(calcs_channels, labels[0:len(calcs_channels)]):
        calcs_deltal = calibration_parts.hook_up(pipeline, raw_data, channel,
                                                 ifo, 1.0)
        calcs_deltal = calibration_parts.caps_and_progress(
            pipeline, calcs_deltal,
            "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
            label)
        calcs_deltal = pipeparts.mktee(pipeline, calcs_deltal)
        for i in range(0, len(frequencies)):
            # Demodulate DELTAL_EXTERNAL at each line
            demodulated_calcs_deltal = calibration_parts.demodulate(
                pipeline, calcs_deltal, frequencies[i], True, rate_out,
                filter_time, 0.5)
            # Take ratio \DeltaL(f) / act_injection(f)
            deltaL_over_act = calibration_parts.complex_division(
                pipeline, demodulated_calcs_deltaL, demodulated_act_list[i])
            # Take a running average
            deltaL_over_act = pipeparts.mkgeneric(pipeline,
                                                  deltaL_over_act,
                                                  "lal_smoothkappas",
                                                  array_size=1,
                                                  avg_array_size=int(
                                                      rate_out * average_time))
            # Write to file
            pipeparts.mknxydumpsink(
                pipeline, deltaL_over_act, "%s_%s_over_%s_at_line%d.txt" %
                (ifo, label.replace(' ', '_'), act_channels[i], i + 1))

    # Check if we are taking act-to-darm ratios for gstlal calibrated data
    if options.gstlal_channel_list is not None:
        cache_num = 0
        for cache, channel, label in zip(
                gstlal_frame_cache_list, gstlal_channels,
                labels[len(calcs_channels):len(channel_list)]):
            # Get gstlal channels from the gstlal frames
            hoft_data = pipeparts.mklalcachesrc(pipeline,
                                                location=cache,
                                                cache_dsc_regex=ifo)
            hoft_data = pipeparts.mkframecppchanneldemux(
                pipeline,
                hoft_data,
                do_file_checksum=False,
                skip_bad_files=True,
                channel_list=list(
                    map("%s:%s".__mod__, channel_list +
                        TDCF_channels[cache_num] + DQ_channels)))
            hoft = calibration_parts.hook_up(pipeline,
                                             hoft_data,
                                             channel,
                                             ifo,
                                             1.0,
                                             element_name_suffix="_%d" %
                                             cache_num)
            hoft = calibration_parts.caps_and_progress(
                pipeline, hoft,
                "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0",
                label)
            deltal = pipeparts.mkaudioamplify(pipeline, hoft, arm_length)
            deltal = pipeparts.mktee(pipeline, deltal)

            # Get a DQ channel
            DQ_channel = "%sCALIB_STATE_VECTOR%s" % (chan_prefixes[cache_num],
                                                     chan_suffixes[cache_num])
            DQ = calibration_parts.hook_up(pipeline,
                                           hoft_data,
                                           DQ_channel,
                                           ifo,
                                           1.0,
                                           element_name_suffix="_%d" %
                                           cache_num)
            DQ = calibration_parts.caps_and_progress(
                pipeline, DQ,
                "audio/x-raw,format=U32LE,channels=1,channel-mask=(bitmask)0x0",
                "DQ_%s" % label)
            DQ = pipeparts.mkgeneric(pipeline,
                                     DQ,
                                     "lal_logicalundersample",
                                     required_on=1,
                                     status_out=1)
            DQ = pipeparts.mkcapsfilter(
                pipeline, DQ,
                "audio/x-raw,format=U32LE,rate=%d,channels=1,channel-mask=(bitmask)0x0"
                % rate_out)
            DQ = pipeparts.mktee(pipeline, DQ)
            for i in range(0, len(frequencies)):
                # Demodulate \DeltaL at each line
                demodulated_deltal = calibration_parts.demodulate(
                    pipeline, deltal, frequencies[i], True, rate_out,
                    filter_time, 0.5)

                # Divide by a TDCF if needed
                if ('tst' in act_line_names[i] or 'esd' in act_line_names[i]
                    ) and (apply_complex_kappatst[cache_num]
                           or apply_kappatst[cache_num]):
                    # Get KAPPA_TST
                    TDCF_real = "%sCALIB_KAPPA_TST_REAL%s" % (
                        chan_prefixes[cache_num], chan_suffixes[cache_num])
                    TDCF_imag = "%sCALIB_KAPPA_TST_IMAGINARY%s" % (
                        chan_prefixes[cache_num], chan_suffixes[cache_num])
                    TDCF_real = calibration_parts.hook_up(
                        pipeline,
                        hoft_data,
                        TDCF_real,
                        ifo,
                        1.0,
                        element_name_suffix="_%d" % cache_num)
                    TDCF_imag = calibration_parts.hook_up(
                        pipeline,
                        hoft_data,
                        TDCF_imag,
                        ifo,
                        1.0,
                        element_name_suffix="_%d" % cache_num)
                    TDCF = calibration_parts.merge_into_complex(
                        pipeline, TDCF_real, TDCF_imag)
                    TDCF = calibration_parts.caps_and_progress(
                        pipeline, TDCF,
                        "audio/x-raw,format=Z128LE,channels=1,channel-mask=(bitmask)0x0",
                        'KAPPA_TST_%s' % label)
                    TDCF = calibration_parts.mkresample(
                        pipeline, TDCF, 3, False, rate_out)
                    if not apply_complex_kappatst[cache_num]:
                        # Only divide by the magnitude
                        TDCF = pipeparts.mkgeneric(pipeline, TDCF, "cabs")
                        TDCF = pipeparts.mktogglecomplex(
                            pipeline,
                            pipeparts.mkmatrixmixer(pipeline,
                                                    TDCF,
                                                    matrix=[[1.0, 0.0]]))
                    demodulated_deltal = calibration_parts.complex_division(
                        pipeline, demodulated_deltal, TDCF)
                elif 'pum' in act_line_names[i] and (
                        apply_complex_kappapum[cache_num]
                        or apply_kappapum[cache_num]):
                    # Get KAPPA_PUM
                    TDCF_real = "%sCALIB_KAPPA_PUM_REAL%s" % (
                        chan_prefixes[cache_num], chan_suffixes[cache_num])
                    TDCF_imag = "%sCALIB_KAPPA_PUM_IMAGINARY%s" % (
                        chan_prefixes[cache_num], chan_suffixes[cache_num])
                    TDCF_real = calibration_parts.hook_up(
                        pipeline,
                        hoft_data,
                        TDCF_real,
                        ifo,
                        1.0,
                        element_name_suffix="_%d" % cache_num)
                    TDCF_imag = calibration_parts.hook_up(
                        pipeline,
                        hoft_data,
                        TDCF_imag,
                        ifo,
                        1.0,
                        element_name_suffix="_%d" % cache_num)
                    TDCF = calibration_parts.merge_into_complex(
                        pipeline, TDCF_real, TDCF_imag)
                    TDCF = calibration_parts.caps_and_progress(
                        pipeline, TDCF,
                        "audio/x-raw,format=Z128LE,channels=1,channel-mask=(bitmask)0x0",
                        'KAPPA_PUM_%s' % label)
                    TDCF = calibration_parts.mkresample(
                        pipeline, TDCF, 3, False, rate_out)
                    if not apply_complex_kappapum[cache_num]:
                        # Only divide by the magnitude
                        TDCF = pipeparts.mkgeneric(pipeline, TDCF, "cabs")
                        TDCF = pipeparts.mktogglecomplex(
                            pipeline,
                            pipeparts.mkmatrixmixer(pipeline,
                                                    TDCF,
                                                    matrix=[[1.0, 0.0]]))
                    demodulated_deltal = calibration_parts.complex_division(
                        pipeline, demodulated_deltal, TDCF)
                elif 'uim' in act_line_names[i] and (
                        apply_complex_kappauim[cache_num]
                        or apply_kappauim[cache_num]):
                    # Get KAPPA_UIM
                    TDCF_real = "%sCALIB_KAPPA_UIM_REAL%s" % (
                        chan_prefixes[cache_num], chan_suffixes[cache_num])
                    TDCF_imag = "%sCALIB_KAPPA_UIM_IMAGINARY%s" % (
                        chan_prefixes[cache_num], chan_suffixes[cache_num])
                    TDCF_real = calibration_parts.hook_up(
                        pipeline,
                        hoft_data,
                        TDCF_real,
                        ifo,
                        1.0,
                        element_name_suffix="_%d" % cache_num)
                    TDCF_imag = calibration_parts.hook_up(
                        pipeline,
                        hoft_data,
                        TDCF_imag,
                        ifo,
                        1.0,
                        element_name_suffix="_%d" % cache_num)
                    TDCF = calibration_parts.merge_into_complex(
                        pipeline, TDCF_real, TDCF_imag)
                    TDCF = calibration_parts.caps_and_progress(
                        pipeline, TDCF,
                        "audio/x-raw,format=Z128LE,channels=1,channel-mask=(bitmask)0x0",
                        'KAPPA_UIM_%s' % label)
                    TDCF = calibration_parts.mkresample(
                        pipeline, TDCF, 3, False, rate_out)
                    if not apply_complex_kappauim[cache_num]:
                        # Only divide by the magnitude
                        TDCF = pipeparts.mkgeneric(pipeline, TDCF, "cabs")
                        TDCF = pipeparts.mktogglecomplex(
                            pipeline,
                            pipeparts.mkmatrixmixer(pipeline,
                                                    TDCF,
                                                    matrix=[[1.0, 0.0]]))
                    demodulated_deltal = calibration_parts.complex_division(
                        pipeline, demodulated_deltal, TDCF)

                # Take ratio \DeltaL(f) / act_injection(f)
                deltaL_over_act = calibration_parts.complex_division(
                    pipeline, demodulated_deltal, demodulated_act_list[i])
                # Take a running average
                deltaL_over_act = pipeparts.mkgeneric(
                    pipeline,
                    deltaL_over_act,
                    "lal_smoothkappas",
                    array_size=1,
                    avg_array_size=int(rate_out * average_time))
                # Find the magnitude
                deltaL_over_act = pipeparts.mktee(pipeline, deltaL_over_act)
                magnitude = pipeparts.mkgeneric(pipeline, deltaL_over_act,
                                                "cabs")
                # Find the phase
                phase = pipeparts.mkgeneric(pipeline, deltaL_over_act, "carg")
                phase = pipeparts.mkaudioamplify(pipeline, phase,
                                                 180.0 / numpy.pi)
                # Interleave
                magnitude_and_phase = calibration_parts.mkinterleave(
                    pipeline, [magnitude, phase])
                # Gate with DQ channel
                magnitude_and_phase = calibration_parts.mkgate(
                    pipeline, magnitude_and_phase, DQ, 1)
                magnitude_and_phase = pipeparts.mkprogressreport(
                    pipeline,
                    magnitude_and_phase,
                    name="progress_sink_%s_%d" % (label, i))
                # Write to file
                pipeparts.mknxydumpsink(
                    pipeline, magnitude_and_phase,
                    "%s_%s_over_%s_at_%0.1fHz_%d.txt" %
                    (ifo, label.replace(' ', '_'), act_channels[i],
                     frequencies[i], options.gps_start_time))
            cache_num = cache_num + 1

    #
    # done
    #

    return pipeline
Пример #16
0
	def __init__(self):
		super(lal_compute_gamma, self).__init__()
		
		# Make an oscillator at calibration line frequency for computation of gamma factors
		cos = gst.element_factory_make("tee")
		self.add(cos)
		sin = gst.element_factory_make("tee")
		self.add(sin)
		
		self.add_pad(gst.GhostPad("cos", cos.get_pad("sink")))
		self.add_pad(gst.GhostPad("sin", sin.get_pad("sink")))		
		# Tee off sources
		exc = gst.element_factory_make("tee")
		self.add(exc)
		dctrl = gst.element_factory_make("tee")
		self.add(dctrl)
		
		self.add_pad(gst.GhostPad("exc_sink", exc.get_pad("sink")))
		self.add_pad(gst.GhostPad("dctrl_sink", dctrl.get_pad("sink")))

		# EXC branch for gamma
		excR = gst.element_factory_make("lal_multiplier")
		excR.set_property("sync", True)
		self.add(excR)
		pipeparts.mkqueue(self, exc).link(excR)
		pipeparts.mkqueue(self, cos).link(excR)
		excR = pipeparts.mkresample(self, excR, quality=9)
		self.excR_capsfilter = excR = pipeparts.mkgeneric(self, excR, "capsfilter")
		self.excR_firbank = excR = pipeparts.mkfirbank(self, excR)
		excR = pipeparts.mktee(self, excR)

		excI = gst.element_factory_make("lal_multiplier")
		excI.set_property("sync", True)
		self.add(excI)
		pipeparts.mkqueue(self, exc).link(excI)
		pipeparts.mkqueue(self, sin).link(excI)
		excI = pipeparts.mkresample(self, excI, quality=9)
		self.excI_capsfilter = excI = pipeparts.mkgeneric(self, excI, "capsfilter")
		self.excI_firbank = excI = pipeparts.mkfirbank(self, excI)
		excI = pipeparts.mktee(self, excI)

		# DARM_CTRL branch for gamma
		dctrlR = gst.element_factory_make("lal_multiplier")
		dctrlR.set_property("sync", True)
		self.add(dctrlR)
		pipeparts.mkqueue(self, dctrl).link(dctrlR)
		pipeparts.mkqueue(self, cos).link(dctrlR)
		dctrlR = pipeparts.mkresample(self, dctrlR, quality=9)
		self.dctrlR_capsfilter = dctrlR = pipeparts.mkgeneric(self, dctrlR, "capsfilter")
		self.dctrlR_firbank = dctrlR = pipeparts.mkfirbank(self, dctrlR)
		dctrlR = pipeparts.mktee(self, dctrlR)

		dctrlI = gst.element_factory_make("lal_multiplier")
		dctrlI.set_property("sync", True)
		self.add(dctrlI)
		pipeparts.mkqueue(self, dctrl).link(dctrlI)
		pipeparts.mkqueue(self, sin).link(dctrlI)
		dctrlI = pipeparts.mkresample(self, dctrlI, quality=9)
		self.dctrlI_capsfilter = dctrlI = pipeparts.mkgeneric(self, dctrlI, "capsfilter")
		self.dctrlI_firbank = dctrlI = pipeparts.mkfirbank(self, dctrlI)
		dctrlI = pipeparts.mktee(self, dctrlI)

		# Make useful combos of channels for calculating gamma
		dctrl_mod = gst.element_factory_make("lal_adder")
		dctrl_mod.set_property("sync", True)
		self.add(dctrl_mod)
		pipeparts.mkqueue(self, pipeparts.mkpow(self, dctrlR, exponent = 2.0)).link(dctrl_mod)
		pipeparts.mkqueue(self, pipeparts.mkpow(self, dctrlI, exponent = 2.0)).link(dctrl_mod)

		self.dctrl_mod_w_mod = dctrl_mod_w_mod = pipeparts.mkgeneric(self, dctrl_mod, "audioamplify")
		dctrl_mod_w_mod = pipeparts.mktee(self, dctrl_mod_w_mod)
		self.dctrl_mod_w_mod_olgR = dctrl_mod_w_mod_olgR = pipeparts.mkgeneric(self, dctrl_mod_w_mod, "audioamplify")
		self.dctrl_mod_w_mod_olgI = dctrl_mod_w_mod_olgI = pipeparts.mkgeneric(self, dctrl_mod_w_mod, "audioamplify")
		self.dctrl_mod_w_mod_olg_mod = dctrl_mod_w_mod_olg_mod = pipeparts.mkgeneric(self, dctrl_mod_w_mod, "audioamplify")
	
		dctrlR_excI = gst.element_factory_make("lal_multiplier")
		dctrlR_excI.set_property("sync", True)
		self.add(dctrlR_excI)
		pipeparts.mkqueue(self, dctrlR).link(dctrlR_excI)
		pipeparts.mkqueue(self, excI).link(dctrlR_excI)
		dctrlR_excI = pipeparts.mktee(self, dctrlR_excI)

		self.dctrlR_excI_olgI = dctrlR_excI_olgI = pipeparts.mkgeneric(self, dctrlR_excI, "audioamplify")
		dctrlR_excI_olgI = pipeparts.mktee(self, dctrlR_excI_olgI)
		self.dctrlR_excI_olgI_wI = dctrlR_excI_olgI_wI = pipeparts.mkgeneric(self, dctrlR_excI_olgI, "audioamplify")
		self.dctrlR_excI_olgI_wR = dctrlR_excI_olgI_wR = pipeparts.mkgeneric(self, dctrlR_excI_olgI, "audioamplify")

		self.dctrlR_excI_olgR = dctrlR_excI_olgR = pipeparts.mkgeneric(self, dctrlR_excI, "audioamplify")
		dctrlR_excI_olgR = pipeparts.mktee(self, dctrlR_excI_olgR)
		self.dctrlR_excI_olgR_wI = dctrlR_excI_olgR_wI = pipeparts.mkgeneric(self, dctrlR_excI_olgR, "audioamplify")
		self.dctrlR_excI_olgR_wR = dctrlR_excI_olgR_wR = pipeparts.mkgeneric(self, dctrlR_excI_olgR, "audioamplify")

		dctrlI_excR = gst.element_factory_make("lal_multiplier")
		dctrlI_excR.set_property("sync", True)
		self.add(dctrlI_excR)
		pipeparts.mkqueue(self, dctrlI).link(dctrlI_excR)
		pipeparts.mkqueue(self, excR).link(dctrlI_excR)
		dctrlI_excR = pipeparts.mktee(self, dctrlI_excR)

		self.dctrlI_excR_olgI = dctrlI_excR_olgI = pipeparts.mkgeneric(self, dctrlI_excR, "audioamplify")
		dctrlI_excR_olgI = pipeparts.mktee(self, dctrlI_excR_olgI)
		self.dctrlI_excR_olgI_wR = dctrlI_excR_olgI_wR = pipeparts.mkgeneric(self, dctrlI_excR_olgI, "audioamplify")
		self.dctrlI_excR_olgI_wI = dctrlI_excR_olgI_wI = pipeparts.mkgeneric(self, dctrlI_excR_olgI, "audioamplify")

		self.dctrlI_excR_olgR = dctrlI_excR_olgR = pipeparts.mkgeneric(self, dctrlI_excR, "audioamplify")
		dctrlI_excR_olgR = pipeparts.mktee(self, dctrlI_excR_olgR)
		self.dctrlI_excR_olgR_wI = dctrlI_excR_olgR_wI = pipeparts.mkgeneric(self, dctrlI_excR_olgR, "audioamplify")
		self.dctrlI_excR_olgR_wR = dctrlI_excR_olgR_wR = pipeparts.mkgeneric(self, dctrlI_excR_olgR, "audioamplify")

		dctrlI_excI = gst.element_factory_make("lal_multiplier")
		dctrlI_excI.set_property("sync", True)
		self.add(dctrlI_excI)
		pipeparts.mkqueue(self, dctrlI).link(dctrlI_excI)
		pipeparts.mkqueue(self, excI).link(dctrlI_excI)
		dctrlI_excI = pipeparts.mktee(self, dctrlI_excI)

		self.dctrlI_excI_olgR = dctrlI_excI_olgR = pipeparts.mkgeneric(self, dctrlI_excI, "audioamplify")
		dctrlI_excI_olgR = pipeparts.mktee(self, dctrlI_excI_olgR)
		self.dctrlI_excI_olgR_wR = dctrlI_excI_olgR_wR = pipeparts.mkgeneric(self, dctrlI_excI_olgR, "audioamplify")
		self.dctrlI_excI_olgR_wI = dctrlI_excI_olgR_wI = pipeparts.mkgeneric(self, dctrlI_excI_olgR, "audioamplify")

		self.dctrlI_excI_olgI = dctrlI_excI_olgI = pipeparts.mkgeneric(self, dctrlI_excI, "audioamplify")
		dctrlI_excI_olgI = pipeparts.mktee(self, dctrlI_excI_olgI)
		self.dctrlI_excI_olgI_wI = dctrlI_excI_olgI_wI = pipeparts.mkgeneric(self, dctrlI_excI_olgI, "audioamplify")
		self.dctrlI_excI_olgI_wR = dctrlI_excI_olgI_wR = pipeparts.mkgeneric(self, dctrlI_excI_olgI, "audioamplify")

		dctrlR_excR = gst.element_factory_make("lal_multiplier")
		dctrlR_excR.set_property("sync", True)
		self.add(dctrlR_excR)
		pipeparts.mkqueue(self, dctrlR).link(dctrlR_excR)
		pipeparts.mkqueue(self, excR).link(dctrlR_excR)
		dctrlR_excR = pipeparts.mktee(self, dctrlR_excR)

		self.dctrlR_excR_olgR = dctrlR_excR_olgR = pipeparts.mkgeneric(self, dctrlR_excR, "audioamplify")
		dctrlR_excR_olgR = pipeparts.mktee(self, dctrlR_excR_olgR)
		self.dctrlR_excR_olgR_wR = dctrlR_excR_olgR_wR = pipeparts.mkgeneric(self, dctrlR_excR_olgR, "audioamplify")
		self.dctrlR_excR_olgR_wI = dctrlR_excR_olgR_wI = pipeparts.mkgeneric(self, dctrlR_excR_olgR, "audioamplify")

		self.dctrlR_excR_olgI = dctrlR_excR_olgI = pipeparts.mkgeneric(self, dctrlR_excR, "audioamplify")
		dctrlR_excR_olgI = pipeparts.mktee(self, dctrlR_excR_olgI)
		self.dctrlR_excR_olgI_wI = dctrlR_excR_olgI_wI = pipeparts.mkgeneric(self, dctrlR_excR_olgI, "audioamplify")
		self.dctrlR_excR_olgI_wR = dctrlR_excR_olgI_wR = pipeparts.mkgeneric(self, dctrlR_excR_olgI, "audioamplify")

		# Combine all of these branches into real and imaginary gamma
		denom = pipeparts.mktee(self, dctrl_mod_w_mod_olg_mod)

		gammaI_num = gst.element_factory_make("lal_adder")
		gammaI_num.set_property("sync", True)
		self.add(gammaI_num)
		pipeparts.mkqueue(self, dctrl_mod_w_mod_olgI).link(gammaI_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlR_excI_olgI_wI, -1.0)).link(gammaI_num)
		pipeparts.mkqueue(self, dctrlI_excR_olgI_wI).link(gammaI_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlI_excI_olgR_wI, -1.0)).link(gammaI_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlR_excR_olgR_wI, -1.0)).link(gammaI_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlI_excI_olgI_wR, -1.0)).link(gammaI_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlR_excR_olgI_wR, -1.0)).link(gammaI_num)
		pipeparts.mkqueue(self, dctrlR_excI_olgR_wR).link(gammaI_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlI_excR_olgR_wR, -1.0)).link(gammaI_num)

		gammaR_num = gst.element_factory_make("lal_adder")
		gammaR_num.set_property("sync", True)
		self.add(gammaR_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrl_mod_w_mod_olgR, -1.0)).link(gammaR_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlI_excI_olgI_wI, -1.0)).link(gammaR_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlR_excR_olgI_wI, -1.0)).link(gammaR_num)
		pipeparts.mkqueue(self, dctrlR_excI_olgR_wI).link(gammaR_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlI_excR_olgR_wI, -1.0)).link(gammaR_num)
		pipeparts.mkqueue(self, dctrlR_excI_olgI_wR).link(gammaR_num)
		pipeparts.mkqueue(self, pipeparts.mkaudioamplify(self, dctrlI_excR_olgI_wR, -1.0)).link(gammaR_num)
		pipeparts.mkqueue(self, dctrlI_excI_olgR_wR).link(gammaR_num)
		pipeparts.mkqueue(self, dctrlR_excR_olgR_wR).link(gammaR_num)

		gammaR = gst.element_factory_make("lal_multiplier")
		gammaR.set_property("sync", True)
		self.add(gammaR)
		pipeparts.mkqueue(self, gammaR_num).link(gammaR)
		pipeparts.mkqueue(self, pipeparts.mkpow(self, denom, exponent = -1.0)).link(gammaR)

		gammaI = gst.element_factory_make("lal_multiplier")
		gammaI.set_property("sync", True)
		self.add(gammaI)
		pipeparts.mkqueue(self, gammaI_num).link(gammaI)
		pipeparts.mkqueue(self, pipeparts.mkpow(self, denom, exponent = -1.0)).link(gammaI)

		# Set up src pads
		self.add_pad(gst.GhostPad("gammaR", gammaR.get_pad("src")))
		self.add_pad(gst.GhostPad("gammaI", gammaI.get_pad("src")))