Пример #1
0
	def ImuPredict(self):
		""" Predict NavState with IMU """
		if self.current_time > self.last_opt_time: # when new optimized pose is available
			# store state at measurement time
			self.last_opt_time = self.current_time
			# start new integration onwards from optimization time
			self.imu_accum.resetIntegration()
			#print("Old IMU, New IMU, opt: {}, {}, {}".format(imu_samples[0][0], imu_samples[-1][0], last_opt_time))
			new_imu_samples = []
			for sample in self.imu_samples:
				if sample[0] > self.last_opt_time:
					self.imu_accum.integrateMeasurement(sample[1], sample[2], sample[3])
					new_imu_samples.append(sample)
			self.imu_samples = new_imu_samples
		# Extract new samples from queue
		(time, linear_acceleration, angular_velocity, dt) = heapq.heappop(self.imu_meas_predict)
		# Store sample for integration when new measurement is available
		self.imu_samples.append((time, linear_acceleration, angular_velocity, dt))
		# Integrate
		self.imu_accum.integrateMeasurement(linear_acceleration, angular_velocity, dt)
		# Compute NavState
		predicted_nav_state = self.imu_accum.predict(gtsam.NavState(self.current_global_pose, self.current_global_vel), self.current_bias)
		# extract position and orientation from NavState
		pos, ori = gtsam_pose_to_numpy(predicted_nav_state.pose()) 
		return (pos, ori, self.current_global_vel, self.current_bias.accelerometer(), self.current_bias.gyroscope())
Пример #2
0
	def ImuUpdate(self, imu_samples):
		""" Update NavState using IMU factor """
		# Reset integration
		imu_accum = gtsam.PreintegratedImuMeasurements(self.imu_preint_params)
		# Integrate IMU measurements at measurement time
		for sample in imu_samples:
			imu_accum.integrateMeasurement(sample[1], sample[2], sample[3])
		# Compute NavState
		predicted_nav_state = imu_accum.predict(gtsam.NavState(self.current_global_pose, self.current_global_vel), self.current_bias)
		# Add IMU factor
		imu_factor = gtsam.ImuFactor(
			self.poseKey-1, self.velKey-1,
			self.poseKey, self.velKey,
			self.biasKey, imu_accum)
		self.new_factors.add(imu_factor)
		return predicted_nav_state
    # and you'll have to take dtᵢ from data.
    params.dt = 1e-2

    # IMU bias
    params.accelerometer_bias = np.array([0, 0.1, 0])
    params.gyroscope_bias = np.array([0, 0, 0])
    params.IMU_bias = gtsam.imuBias_ConstantBias(params.accelerometer_bias,
                                                 params.gyroscope_bias)

    # 'circle_gold.npy' simulates a loop with forward velocity 2 m/s,
    # while pitching up with angular velocity 30 degrees/sec.
    params.initial_velocity = np.array([2, 0, 0])
    params.initial_angular_vel = np.array([0, -math.radians(30),
                                           0])  # not used here
    params.initial_pose = gtsam.Pose3()
    params.initial_state = gtsam.NavState(params.initial_pose,
                                          params.initial_velocity)

    # IMU preintegration algorithm parameters
    # "U" means "Z axis points up"; "MakeSharedD" would mean "Z axis points along the gravity"
    preintegration_params = gtsam.PreintegrationParams.MakeSharedU(
        10)  # 10 is the gravity force
    # Realistic noise parameters
    kGyroSigma = math.radians(0.5) / 60  # 0.5 degree ARW
    kAccelSigma = 0.1 / 60  # 10 cm VRW
    preintegration_params.setGyroscopeCovariance(kGyroSigma**2 *
                                                 np.identity(3, np.float))
    preintegration_params.setAccelerometerCovariance(kAccelSigma**2 *
                                                     np.identity(3, np.float))
    preintegration_params.setIntegrationCovariance(0.0000001**2 *
                                                   np.identity(3, np.float))
    params.preintegration_params = preintegration_params
Пример #4
0
    def run(self,
            T: int = 12,
            compute_covariances: bool = False,
            verbose: bool = True):
        """
        Main runner.

        Args:
            T: Total trajectory time.
            compute_covariances: Flag indicating whether to compute marginal covariances.
            verbose: Flag indicating if printing should be verbose.
        """
        graph = gtsam.NonlinearFactorGraph()

        # initialize data structure for pre-integrated IMU measurements
        pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)

        num_poses = T  # assumes 1 factor per second
        initial = gtsam.Values()
        initial.insert(BIAS_KEY, self.actualBias)

        # simulate the loop
        i = 0  # state index
        initial_state_i = self.scenario.navState(0)
        initial.insert(X(i), initial_state_i.pose())
        initial.insert(V(i), initial_state_i.velocity())

        # add prior on beginning
        self.addPrior(0, graph)

        for k, t in enumerate(np.arange(0, T, self.dt)):
            # get measurements and add them to PIM
            measuredOmega = self.runner.measuredAngularVelocity(t)
            measuredAcc = self.runner.measuredSpecificForce(t)
            pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)

            # Plot IMU many times
            if k % 10 == 0:
                self.plotImu(t, measuredOmega, measuredAcc)

            if (k + 1) % int(1 / self.dt) == 0:
                # Plot every second
                self.plotGroundTruthPose(t, scale=1)
                plt.title("Ground Truth Trajectory")

                # create IMU factor every second
                factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
                                         BIAS_KEY, pim)
                graph.push_back(factor)

                if verbose:
                    print(factor)
                    print(pim.predict(initial_state_i, self.actualBias))

                pim.resetIntegration()

                rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1)
                translationNoise = gtsam.Point3(*np.random.randn(3) * 1)
                poseNoise = gtsam.Pose3(rotationNoise, translationNoise)

                actual_state_i = self.scenario.navState(t + self.dt)
                print("Actual state at {0}:\n{1}".format(
                    t + self.dt, actual_state_i))

                noisy_state_i = gtsam.NavState(
                    actual_state_i.pose().compose(poseNoise),
                    actual_state_i.velocity() + np.random.randn(3) * 0.1)

                initial.insert(X(i + 1), noisy_state_i.pose())
                initial.insert(V(i + 1), noisy_state_i.velocity())
                i += 1

        # add priors on end
        self.addPrior(num_poses - 1, graph)

        initial.print("Initial values:")

        result = self.optimize(graph, initial)

        result.print("Optimized values:")
        print("------------------")
        print(graph.error(initial))
        print(graph.error(result))
        print("------------------")

        if compute_covariances:
            # Calculate and print marginal covariances
            marginals = gtsam.Marginals(graph, result)
            print("Covariance on bias:\n",
                  marginals.marginalCovariance(BIAS_KEY))
            for i in range(num_poses):
                print("Covariance on pose {}:\n{}\n".format(
                    i, marginals.marginalCovariance(X(i))))
                print("Covariance on vel {}:\n{}\n".format(
                    i, marginals.marginalCovariance(V(i))))

        self.plot(result, show=True)
Пример #5
0
    def run(self, T=12, compute_covariances=False, verbose=True):
        graph = gtsam.NonlinearFactorGraph()

        # initialize data structure for pre-integrated IMU measurements
        pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)

        # T = 12
        num_poses = T  # assumes 1 factor per second
        initial = gtsam.Values()
        initial.insert(BIAS_KEY, self.actualBias)

        # simulate the loop
        i = 0  # state index
        initial_state_i = self.scenario.navState(0)
        initial.insert(X(i), initial_state_i.pose())
        initial.insert(V(i), initial_state_i.velocity())

        # add prior on beginning
        self.addPrior(0, graph)

        gtNavStates = []
        predictedNavStates = []
        integrationTime = []
        for k, t in enumerate(np.arange(0, T, self.dt)):
            # get measurements and add them to PIM
            measuredOmega = self.runner.measuredAngularVelocity(t)
            measuredAcc = self.runner.measuredSpecificForce(t)
            start = time()
            pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
            integrationTime.append(time() - start)
            # Plot IMU many times
            if k % 10 == 0 and not DISABLE_VISUAL:
                self.plotImu(t, measuredOmega, measuredAcc)

            if (k + 1) % int(1 / self.dt) == 0:
                # Plot every second
                gtNavState = self.plotGroundTruthPose(t, scale=0.3)
                gtNavStates.append(gtNavState)
                plt.title("Ground Truth + Estimated Trajectory")

                # create IMU factor every second
                factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1),
                                         BIAS_KEY, pim)
                graph.push_back(factor)

                if verbose:
                    print(factor)
                    print(pim.predict(initial_state_i, self.actualBias))

                pim.resetIntegration()

                rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3) * 0.1 * 1)
                translationNoise = gtsam.Point3(*np.random.randn(3) * 1 * 1)
                poseNoise = gtsam.Pose3(rotationNoise, translationNoise)

                actual_state_i = self.scenario.navState(t + self.dt)
                if not DISABLE_VISUAL:
                    print("Actual state at {0}:\n{1}".format(
                        t + self.dt, actual_state_i))

                noisy_state_i = gtsam.NavState(
                    actual_state_i.pose().compose(poseNoise),
                    actual_state_i.velocity() + np.random.randn(3) * 0.1)

                initial.insert(X(i + 1), noisy_state_i.pose())
                initial.insert(V(i + 1), noisy_state_i.velocity())
                i += 1

        # add priors on end
        self.addPrior(num_poses - 1, graph)

        initial.print_("Initial values:")

        # optimize using Levenberg-Marquardt optimization
        params = gtsam.LevenbergMarquardtParams()
        params.setVerbosityLM("SUMMARY")
        optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
        result = optimizer.optimize()

        result.print_("Optimized values:")

        if compute_covariances:
            # Calculate and print marginal covariances
            marginals = gtsam.Marginals(graph, result)
            print("Covariance on bias:\n",
                  marginals.marginalCovariance(BIAS_KEY))
            for i in range(num_poses):
                print("Covariance on pose {}:\n{}\n".format(
                    i, marginals.marginalCovariance(X(i))))
                print("Covariance on vel {}:\n{}\n".format(
                    i, marginals.marginalCovariance(V(i))))

        # Plot resulting poses
        i = 0
        while result.exists(X(i)):
            pose_i = result.atPose3(X(i))
            predictedNavStates.append(pose_i)
            if not DISABLE_VISUAL:
                plot_pose3(POSES_FIG, pose_i, 1)
            i += 1
        # plt.title("Estimated Trajectory")

        if not DISABLE_VISUAL:
            gtsam.utils.plot.set_axes_equal(POSES_FIG)

        print("Bias Values", result.atConstantBias(BIAS_KEY))

        ATE = []
        # import ipdb; ipdb.set_trace()
        for gt, pred in zip(gtNavStates, predictedNavStates[1:]):
            delta = gt.inverse().compose(pred)
            ATE.append(np.linalg.norm(delta.Logmap(delta))**2)
        print("ATE={}".format(np.sqrt(np.mean(ATE))))

        print("Run time={}".format(np.median(integrationTime)))
        plt.ioff()
        plt.show()