Пример #1
0
    def test_get_top_k_without_responses(self):
        """Tests the selection of top entries in a keypoints w/o responses."""

        input_keypoints = Keypoints(
            coordinates=np.array(
                [
                    [10.0, 23.2],
                    [37.1, 50.2],
                    [90.1, 10.7],
                    [150.0, 122.0],
                    [250.0, 49.0],
                ]
            )
        )

        # test with requested length > current length
        requested_length = len(input_keypoints) * 2
        computed = input_keypoints.get_top_k(requested_length)

        self.assertEqual(computed, input_keypoints)

        # test with requested length < current length
        requested_length = 2
        computed = input_keypoints.get_top_k(requested_length)

        expected = Keypoints(coordinates=input_keypoints.coordinates[:requested_length])

        self.assertEqual(computed, expected)
Пример #2
0
    def detect_and_describe(self,
                            image: Image) -> Tuple[Keypoints, np.ndarray]:
        """Jointly generate keypoint detections and their associated descriptors from a single image."""
        # TODO(ayushbaid): fix inference issue #110
        device = torch.device("cuda" if self._use_cuda else "cpu")
        model = SuperPoint(self._config).to(device)
        model.eval()

        # Compute features.
        image_tensor = torch.from_numpy(
            np.expand_dims(
                image_utils.rgb_to_gray_cv(image).value_array.astype(
                    np.float32) / 255.0, (0, 1))).to(device)
        with torch.no_grad():
            model_results = model({"image": image_tensor})
        torch.cuda.empty_cache()

        # Unpack results.
        coordinates = model_results["keypoints"][0].detach().cpu().numpy()
        scores = model_results["scores"][0].detach().cpu().numpy()
        keypoints = Keypoints(coordinates, scales=None, responses=scores)
        descriptors = model_results["descriptors"][0].detach().cpu().numpy().T

        # Filter features.
        if image.mask is not None:
            keypoints, valid_idxs = keypoints.filter_by_mask(image.mask)
            descriptors = descriptors[valid_idxs]
        keypoints, selection_idxs = keypoints.get_top_k(self.max_keypoints)
        descriptors = descriptors[selection_idxs]

        return keypoints, descriptors
Пример #3
0
    def test_get_top_k_with_responses(self):
        """Tests the selection of top entries in a keypoints with responses."""

        input_keypoints = Keypoints(
            coordinates=np.array(
                [
                    [10.0, 23.2],
                    [37.1, 50.2],
                    [90.1, 10.7],
                    [150.0, 122.0],
                    [250.0, 49.0],
                ]
            ),
            scales=np.array([1, 3, 2, 3.2, 1.8]),
            responses=np.array([0.3, 0.7, 0.9, 0.1, 0.2]),
        )

        # test with requested length > current length
        requested_length = len(input_keypoints) * 2
        computed = input_keypoints.get_top_k(requested_length)

        self.assertEqual(computed, input_keypoints)

        # test with requested length < current length
        requested_length = 2
        computed = input_keypoints.get_top_k(requested_length)

        expected = Keypoints(
            coordinates=np.array(
                [
                    [37.1, 50.2],
                    [90.1, 10.7],
                ]
            ),
            scales=np.array([3, 2]),
            responses=np.array([0.7, 0.9]),
        )

        # compare in an order-insensitive fashion
        self.compare_without_ordering(computed, expected)