Пример #1
0
def hard_osimertinib() -> GoalDirectedBenchmark:
    smiles = 'COc1cc(N(C)CCN(C)C)c(NC(=O)C=C)cc1Nc2nccc(n2)c3cn(C)c4ccccc34'

    modifier = ClippedScoreModifier(upper_x=0.8)
    similar_to_osimertinib = TanimotoScoringFunction(smiles,
                                                     fp_type='FCFP4',
                                                     score_modifier=modifier)

    but_not_too_similar = TanimotoScoringFunction(
        smiles,
        fp_type='ECFP6',
        score_modifier=MinGaussianModifier(mu=0.85, sigma=0.1))

    tpsa_over_100 = RdkitScoringFunction(descriptor=tpsa,
                                         score_modifier=MaxGaussianModifier(
                                             mu=100, sigma=10))

    logP_scoring = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MinGaussianModifier(
                                            mu=1, sigma=1))

    make_osimertinib_great_again = ArithmeticMeanScoringFunction([
        similar_to_osimertinib, but_not_too_similar, tpsa_over_100,
        logP_scoring
    ])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Osimertinib MPO',
                                 objective=make_osimertinib_great_again,
                                 contribution_specification=specification)
Пример #2
0
def weird_physchem() -> GoalDirectedBenchmark:
    min_bertz = RdkitScoringFunction(descriptor=bertz,
                                     score_modifier=MaxGaussianModifier(
                                         mu=1500, sigma=200))

    mol_under_400 = RdkitScoringFunction(descriptor=mol_weight,
                                         score_modifier=MinGaussianModifier(
                                             mu=400, sigma=40))

    aroma = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MinGaussianModifier(mu=3,
                                                                    sigma=1))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'),
                                    score_modifier=GaussianModifier(mu=6,
                                                                    sigma=1.0))

    opt_weird = ArithmeticMeanScoringFunction(
        [min_bertz, mol_under_400, aroma, fluorine])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Physchem MPO',
                                 objective=opt_weird,
                                 contribution_specification=specification)
Пример #3
0
def hard_cobimetinib() -> GoalDirectedBenchmark:
    smiles = 'OC1(CN(C1)C(=O)C1=C(NC2=C(F)C=C(I)C=C2)C(F)=C(F)C=C1)C1CCCCN1'

    modifier = ClippedScoreModifier(upper_x=0.7)
    os_tf = TanimotoScoringFunction(smiles,
                                    fp_type='FCFP4',
                                    score_modifier=modifier)
    os_ap = TanimotoScoringFunction(smiles,
                                    fp_type='ECFP6',
                                    score_modifier=MinGaussianModifier(
                                        mu=0.75, sigma=0.1))

    rot_b = RdkitScoringFunction(descriptor=num_rotatable_bonds,
                                 score_modifier=MinGaussianModifier(mu=3,
                                                                    sigma=1))

    rings = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MaxGaussianModifier(mu=3,
                                                                    sigma=1))

    t_cns = ArithmeticMeanScoringFunction(
        [os_tf, os_ap, rot_b, rings,
         CNS_MPO_ScoringFunction()])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Cobimetinib MPO',
                                 objective=t_cns,
                                 contribution_specification=specification)
Пример #4
0
def hard_fexofenadine() -> GoalDirectedBenchmark:
    """
    make fexofenadine less greasy
    :return:
    """
    smiles = 'CC(C)(C(=O)O)c1ccc(cc1)C(O)CCCN2CCC(CC2)C(O)(c3ccccc3)c4ccccc4'

    modifier = ClippedScoreModifier(upper_x=0.8)
    similar_to_fexofenadine = TanimotoScoringFunction(smiles,
                                                      fp_type='AP',
                                                      score_modifier=modifier)

    tpsa_over_90 = RdkitScoringFunction(descriptor=tpsa,
                                        score_modifier=MaxGaussianModifier(
                                            mu=90, sigma=10))

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MinGaussianModifier(
                                            mu=4, sigma=1))

    optimize_fexofenadine = ArithmeticMeanScoringFunction(
        [similar_to_fexofenadine, tpsa_over_90, logP_under_4])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Fexofenadine MPO',
                                 objective=optimize_fexofenadine,
                                 contribution_specification=specification)
Пример #5
0
def start_pop_ranolazine() -> GoalDirectedBenchmark:
    ranolazine = 'COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2'

    modifier = ClippedScoreModifier(upper_x=0.7)
    similar_to_ranolazine = TanimotoScoringFunction(ranolazine,
                                                    fp_type='AP',
                                                    score_modifier=modifier)

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MaxGaussianModifier(
                                            mu=7, sigma=1))

    aroma = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                 score_modifier=MinGaussianModifier(mu=1,
                                                                    sigma=1))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter('F'),
                                    score_modifier=GaussianModifier(mu=1,
                                                                    sigma=1.0))

    optimize_ranolazine = ArithmeticMeanScoringFunction(
        [similar_to_ranolazine, logP_under_4, fluorine, aroma])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Ranolazine MPO',
                                 objective=optimize_ranolazine,
                                 contribution_specification=specification,
                                 starting_population=[ranolazine])
Пример #6
0
def ranolazine_mpo() -> GoalDirectedBenchmark:
    """
    Make start_pop_ranolazine more polar and add a fluorine
    """
    ranolazine = "COc1ccccc1OCC(O)CN2CCN(CC(=O)Nc3c(C)cccc3C)CC2"

    modifier = ClippedScoreModifier(upper_x=0.7)
    similar_to_ranolazine = TanimotoScoringFunction(ranolazine,
                                                    fp_type="AP",
                                                    score_modifier=modifier)

    logP_under_4 = RdkitScoringFunction(descriptor=logP,
                                        score_modifier=MaxGaussianModifier(
                                            mu=7, sigma=1))

    tpsa_f = RdkitScoringFunction(descriptor=tpsa,
                                  score_modifier=MaxGaussianModifier(mu=95,
                                                                     sigma=20))

    fluorine = RdkitScoringFunction(descriptor=AtomCounter("F"),
                                    score_modifier=GaussianModifier(mu=1,
                                                                    sigma=1.0))

    optimize_ranolazine = GeometricMeanScoringFunction(
        [similar_to_ranolazine, logP_under_4, fluorine, tpsa_f])

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(
        name="Ranolazine MPO",
        objective=optimize_ranolazine,
        contribution_specification=specification,
        starting_population=[ranolazine],
    )
Пример #7
0
def sitagliptin_replacement() -> GoalDirectedBenchmark:
    # Find a molecule dissimilar to sitagliptin, but with the same properties
    smiles = "Fc1cc(c(F)cc1F)CC(N)CC(=O)N3Cc2nnc(n2CC3)C(F)(F)F"
    sitagliptin = Chem.MolFromSmiles(smiles)
    target_logp = logP(sitagliptin)
    target_tpsa = tpsa(sitagliptin)

    similarity = TanimotoScoringFunction(smiles,
                                         fp_type="ECFP4",
                                         score_modifier=GaussianModifier(
                                             mu=0, sigma=0.1))
    lp = RdkitScoringFunction(descriptor=logP,
                              score_modifier=GaussianModifier(mu=target_logp,
                                                              sigma=0.2))
    tp = RdkitScoringFunction(descriptor=tpsa,
                              score_modifier=GaussianModifier(mu=target_tpsa,
                                                              sigma=5))
    isomers = IsomerScoringFunction("C16H15F6N5O")

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(
        name="Sitagliptin MPO",
        objective=GeometricMeanScoringFunction([similarity, lp, tp, isomers]),
        contribution_specification=specification,
    )
Пример #8
0
def smarts_with_other_target(smarts: str, other_molecule: str) -> ScoringFunction:
    smarts_scoring_function = SMARTSScoringFunction(target=smarts)
    other_mol = Chem.MolFromSmiles(other_molecule)
    target_logp = logP(other_mol)
    target_tpsa = tpsa(other_mol)
    target_bertz = bertz(other_mol)

    lp = RdkitScoringFunction(descriptor=logP,
                              score_modifier=GaussianModifier(mu=target_logp, sigma=0.2))
    tp = RdkitScoringFunction(descriptor=tpsa,
                              score_modifier=GaussianModifier(mu=target_tpsa, sigma=5))
    bz = RdkitScoringFunction(descriptor=bertz,
                              score_modifier=GaussianModifier(mu=target_bertz, sigma=30))

    return GeometricMeanScoringFunction([smarts_scoring_function, lp, tp, bz])
def similarity_constrained_penalized_logp_cyclebasis(smiles, name, threshold, dataset, fp_type="ECFP4"):
    benchmark_name = f"{name} {threshold:.1f} Similarity Constrained Penalized logP"

    objective = RdkitScoringFunction(descriptor=lambda mol: _penalized_logp_cyclebasis(mol, dataset))
    offset = -objective.score(smiles)
    constraint = TanimotoScoringFunction(target=smiles, fp_type=fp_type)
    constrained_objective = ThresholdedImprovementScoringFunction(
        objective=objective, constraint=constraint, threshold=threshold, offset=offset
    )
    constrained_objective.corrupt_score = -1000.0

    specification = uniform_specification(1)

    return GoalDirectedBenchmark(
        name=benchmark_name, objective=constrained_objective, contribution_specification=specification
    )
def qed_benchmark() -> GoalDirectedBenchmark:
    specification = uniform_specification(1, 10, 100)
    return GoalDirectedBenchmark(
        name="QED",
        objective=RdkitScoringFunction(descriptor=qed),
        contribution_specification=specification,
    )
Пример #11
0
def pioglitazone_mpo() -> GoalDirectedBenchmark:
    # pioglitazone with same mw but less rotatable bonds
    smiles = 'O=C1NC(=O)SC1Cc3ccc(OCCc2ncc(cc2)CC)cc3'
    pioglitazone = Chem.MolFromSmiles(smiles)
    target_molw = mol_weight(pioglitazone)

    similarity = TanimotoScoringFunction(smiles, fp_type='ECFP4',
                                         score_modifier=GaussianModifier(mu=0, sigma=0.1))
    mw = RdkitScoringFunction(descriptor=mol_weight,
                              score_modifier=GaussianModifier(mu=target_molw, sigma=10))
    rb = RdkitScoringFunction(descriptor=num_rotatable_bonds,
                              score_modifier=GaussianModifier(mu=2, sigma=0.5))

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Pioglitazone MPO',
                                 objective=GeometricMeanScoringFunction([similarity, mw, rb]),
                                 contribution_specification=specification)
Пример #12
0
def tpsa_benchmark(target: float) -> GoalDirectedBenchmark:
    benchmark_name = f'TPSA (target: {target})'
    objective = RdkitScoringFunction(descriptor=tpsa,
                                     score_modifier=GaussianModifier(mu=target, sigma=20.0))

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name=benchmark_name,
                                 objective=objective,
                                 contribution_specification=specification)
Пример #13
0
def amlodipine_rings() -> GoalDirectedBenchmark:
    # amlodipine with 3 rings
    amlodipine = TanimotoScoringFunction(r'Clc1ccccc1C2C(=C(/N/C(=C2/C(=O)OCC)COCCN)C)\C(=O)OC', fp_type='ECFP4')
    rings = RdkitScoringFunction(descriptor=num_rings,
                                 score_modifier=GaussianModifier(mu=3, sigma=0.5))

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Amlodipine MPO',
                                 objective=GeometricMeanScoringFunction([amlodipine, rings]),
                                 contribution_specification=specification)
Пример #14
0
def perindopril_rings() -> GoalDirectedBenchmark:
    # perindopril with two aromatic rings
    perindopril = TanimotoScoringFunction('O=C(OCC)C(NC(C(=O)N1C(C(=O)O)CC2CCCCC12)C)CCC',
                                          fp_type='ECFP4')
    arom_rings = RdkitScoringFunction(descriptor=num_aromatic_rings,
                                      score_modifier=GaussianModifier(mu=2, sigma=0.5))

    specification = uniform_specification(1, 10, 100)

    return GoalDirectedBenchmark(name='Perindopril MPO',
                                 objective=GeometricMeanScoringFunction([perindopril, arom_rings]),
                                 contribution_specification=specification)
def penalized_logp_cyclebasis(dataset):
    benchmark_name = "Penalized logP CycleBasis"
    objective = RdkitScoringFunction(descriptor=lambda mol: _penalized_logp_cyclebasis(mol, dataset))
    objective.corrupt_score = -1000.0
    specification = uniform_specification(1)
    return GoalDirectedBenchmark(name=benchmark_name, objective=objective, contribution_specification=specification)