Пример #1
0
            raw:
            gp.ArraySpec(
                interpolatable=True, voxel_size=voxel_size, dtype=np.uint16)
        },
    ),
    MouselightSwcFileSource(
        filename=str((
            filename /
            "consensus-neurons-with-machine-centerpoints-labelled-as-swcs/G-002.swc"
        ).absolute()),
        points=(swcs, ),
        scale=voxel_size,
        transpose=(2, 1, 0),
        transform_file=str((filename / "transform.txt").absolute()),
    ),
) + gp.MergeProvider() + gp.RandomLocation(
    ensure_nonempty=swcs, ensure_centered=True) + RasterizeSkeleton(
        points=swcs,
        array=labels,
        array_spec=gp.ArraySpec(
            interpolatable=False, voxel_size=voxel_size, dtype=np.uint32),
    ) + GrowLabels(labels, radius=10)
                     # augment
                     + gp.ElasticAugment(
                         [40, 10, 10], [0.25, 1, 1], [0, math.pi / 2.0],
                         subsample=4) + gp.SimpleAugment(
                             mirror_only=[1, 2], transpose_only=[1, 2]) +
                     gp.Normalize(raw) +
                     gp.IntensityAugment(raw, 0.9, 1.1, -0.001, 0.001)
                     for filename in path_to_data.iterdir()
                     if "2018-08-01" in filename.name)
Пример #2
0
def train_until(max_iteration):

    # get the latest checkpoint
    if tf.train.latest_checkpoint("."):
        trained_until = int(tf.train.latest_checkpoint(".").split("_")[-1])
    else:
        trained_until = 0
        if trained_until >= max_iteration:
            return

    # array keys for data sources
    raw = gp.ArrayKey("RAW")
    swcs = gp.PointsKey("SWCS")
    labels = gp.ArrayKey("LABELS")

    # array keys for base volume
    raw_base = gp.ArrayKey("RAW_BASE")
    labels_base = gp.ArrayKey("LABELS_BASE")
    swc_base = gp.PointsKey("SWC_BASE")

    # array keys for add volume
    raw_add = gp.ArrayKey("RAW_ADD")
    labels_add = gp.ArrayKey("LABELS_ADD")
    swc_add = gp.PointsKey("SWC_ADD")

    # array keys for fused volume
    raw_fused = gp.ArrayKey("RAW_FUSED")
    labels_fused = gp.ArrayKey("LABELS_FUSED")
    swc_fused = gp.PointsKey("SWC_FUSED")

    # output data
    fg = gp.ArrayKey("FG")
    labels_fg = gp.ArrayKey("LABELS_FG")
    labels_fg_bin = gp.ArrayKey("LABELS_FG_BIN")

    gradient_fg = gp.ArrayKey("GRADIENT_FG")
    loss_weights = gp.ArrayKey("LOSS_WEIGHTS")

    voxel_size = gp.Coordinate((10, 3, 3))
    input_size = gp.Coordinate(net_config["input_shape"]) * voxel_size
    output_size = gp.Coordinate(net_config["output_shape"]) * voxel_size

    # add request
    request = gp.BatchRequest()
    request.add(raw_fused, input_size)
    request.add(labels_fused, input_size)
    request.add(swc_fused, input_size)
    request.add(labels_fg, output_size)
    request.add(labels_fg_bin, output_size)
    request.add(loss_weights, output_size)

    # add snapshot request
    # request.add(fg, output_size)
    # request.add(labels_fg, output_size)
    request.add(gradient_fg, output_size)
    request.add(raw_base, input_size)
    request.add(raw_add, input_size)
    request.add(labels_base, input_size)
    request.add(labels_add, input_size)
    request.add(swc_base, input_size)
    request.add(swc_add, input_size)

    data_sources = tuple(
        (
            gp.N5Source(
                filename=str(
                    (
                        filename
                        / "consensus-neurons-with-machine-centerpoints-labelled-as-swcs-carved.n5"
                    ).absolute()
                ),
                datasets={raw: "volume"},
                array_specs={
                    raw: gp.ArraySpec(
                        interpolatable=True, voxel_size=voxel_size, dtype=np.uint16
                    )
                },
            ),
            MouselightSwcFileSource(
                filename=str(
                    (
                        filename
                        / "consensus-neurons-with-machine-centerpoints-labelled-as-swcs"
                    ).absolute()
                ),
                points=(swcs,),
                scale=voxel_size,
                transpose=(2, 1, 0),
                transform_file=str((filename / "transform.txt").absolute()),
                ignore_human_nodes=True
            ),
        )
        + gp.MergeProvider()
        + gp.RandomLocation(
            ensure_nonempty=swcs, ensure_centered=True
        )
        + RasterizeSkeleton(
            points=swcs,
            array=labels,
            array_spec=gp.ArraySpec(
                interpolatable=False, voxel_size=voxel_size, dtype=np.uint32
            ),
        )
        + GrowLabels(labels, radius=10)
        # augment
        + gp.ElasticAugment(
            [40, 10, 10],
            [0.25, 1, 1],
            [0, math.pi / 2.0],
            subsample=4,
        )
        + gp.SimpleAugment(mirror_only=[1, 2], transpose_only=[1, 2])
        + gp.Normalize(raw)
        + gp.IntensityAugment(raw, 0.9, 1.1, -0.001, 0.001)
        for filename in Path(sample_dir).iterdir()
        if "2018-08-01" in filename.name  # or "2018-07-02" in filename.name
    )

    pipeline = (
        data_sources
        + gp.RandomProvider()
        + GetNeuronPair(
            swcs,
            raw,
            labels,
            (swc_base, swc_add),
            (raw_base, raw_add),
            (labels_base, labels_add),
            seperate_by=150,
            shift_attempts=50,
            request_attempts=10,
        )
        + FusionAugment(
            raw_base,
            raw_add,
            labels_base,
            labels_add,
            swc_base,
            swc_add,
            raw_fused,
            labels_fused,
            swc_fused,
            blend_mode="labels_mask",
            blend_smoothness=10,
            num_blended_objects=0,
        )
        + Crop(labels_fused, labels_fg)
        + BinarizeGt(labels_fg, labels_fg_bin)
        + gp.BalanceLabels(labels_fg_bin, loss_weights)
        # train
        + gp.PreCache(cache_size=40, num_workers=10)
        + gp.tensorflow.Train(
            "./train_net",
            optimizer=net_names["optimizer"],
            loss=net_names["loss"],
            inputs={
                net_names["raw"]: raw_fused,
                net_names["labels_fg"]: labels_fg_bin,
                net_names["loss_weights"]: loss_weights,
            },
            outputs={net_names["fg"]: fg},
            gradients={net_names["fg"]: gradient_fg},
            save_every=100000,
        )
        + gp.Snapshot(
            output_filename="snapshot_{iteration}.hdf",
            dataset_names={
                raw_fused: "volumes/raw_fused",
                raw_base: "volumes/raw_base",
                raw_add: "volumes/raw_add",
                labels_fused: "volumes/labels_fused",
                labels_base: "volumes/labels_base",
                labels_add: "volumes/labels_add",
                labels_fg_bin: "volumes/labels_fg_bin",
                fg: "volumes/pred_fg",
                gradient_fg: "volumes/gradient_fg",
            },
            every=100,
        )
        + gp.PrintProfilingStats(every=10)
    )

    with gp.build(pipeline):

        logging.info("Starting training...")
        for i in range(max_iteration - trained_until):
            logging.info("requesting batch {}".format(i))
            batch = pipeline.request_batch(request)
            """
Пример #3
0
def create_pipeline_3d(
    task, data, predictor, optimizer, batch_size, outdir, snapshot_every
):

    raw_channels = max(1, data.raw.num_channels)
    input_shape = gp.Coordinate(task.model.input_shape)
    output_shape = gp.Coordinate(task.model.output_shape)
    voxel_size = data.raw.train.voxel_size

    task.predictor = task.predictor.to("cuda")

    # switch to world units
    input_size = voxel_size * input_shape
    output_size = voxel_size * output_shape

    raw = gp.ArrayKey("RAW")
    gt = gp.ArrayKey("GT")
    mask = gp.ArrayKey("MASK")
    target = gp.ArrayKey("TARGET")
    weights = gp.ArrayKey("WEIGHTS")
    model_outputs = gp.ArrayKey("MODEL_OUTPUTS")
    model_output_grads = gp.ArrayKey("MODEL_OUT_GRAD")
    prediction = gp.ArrayKey("PREDICTION")
    pred_gradients = gp.ArrayKey("PRED_GRADIENTS")

    snapshot_dataset_names = {
        raw: "raw",
        model_outputs: "model_outputs",
        model_output_grads: "model_out_grad",
        target: "target",
        prediction: "prediction",
        pred_gradients: "pred_gradients",
        weights: "weights",
    }

    aux_keys = {}
    aux_grad_keys = {}
    for name, _, _ in task.aux_tasks:
        aux_keys[name] = (
            gp.ArrayKey(f"{name.upper()}_PREDICTION"),
            gp.ArrayKey(f"{name.upper()}_TARGET"),
            None,
        )
        aux_grad_keys[name] = gp.ArrayKey(f"{name.upper()}_PRED_GRAD")

        aux_pred, aux_target, _ = aux_keys[name]

        snapshot_dataset_names[aux_pred] = f"{name}_pred"
        snapshot_dataset_names[aux_target] = f"{name}_target"
        
        aux_grad = aux_grad_keys[name]
        snapshot_dataset_names[aux_grad] = f"{name}_aux_grad"

    channel_dims = 0 if raw_channels == 1 else 1

    num_samples = data.raw.train.num_samples
    assert num_samples == 0, "Multiple samples for 3D training not yet implemented"

    sources = (data.raw.train.get_source(raw), data.gt.train.get_source(gt))
    pipeline = sources + gp.MergeProvider()
    pipeline += gp.Pad(raw, input_shape / 2 * voxel_size)
    # pipeline += gp.Pad(gt, input_shape / 2 * voxel_size)
    # raw: ([c,] d, h, w)
    # gt: ([c,] d, h, w)
    pipeline += gp.Normalize(raw)
    
    mask_node = task.loss.add_mask(gt, mask)
    if mask_node is not None:
        pipeline += mask_node
        pipeline += gp.RandomLocation(min_masked=1e-6, mask=mask)
    else:
        # raw: ([c,] d, h, w)
        # gt: ([c,] d, h, w)
        pipeline += gp.RandomLocation()
    # raw: ([c,] d, h, w)
    # gt: ([c,] d, h, w)
    for augmentation in eval(task.augmentations):
        pipeline += augmentation
    pipeline += predictor.add_target(gt, target)
    # (don't care about gt anymore)
    # raw: ([c,] d, h, w)
    # target: ([c,] d, h, w)
    weights_node = task.loss.add_weights(target, weights)
    loss_inputs = []
    if weights_node:
        pipeline += weights_node
        loss_inputs.append({0: prediction, 1: target, 2: weights})
    else:
        loss_inputs.append({0: prediction, 1: target})

    head_outputs = []
    head_gradients = []
    for name, aux_predictor, aux_loss in task.aux_tasks:
        aux_prediction, aux_target, aux_weights = aux_keys[name]
        pipeline += aux_predictor.add_target(gt, aux_target)
        aux_weights_node = aux_loss.add_weights(aux_target, aux_weights)
        if aux_weights_node:
            aux_weights = gp.ArrayKey(f"{name.upper()}_WEIGHTS")
            aux_keys[name] = (
                aux_prediction,
                aux_target,
                aux_weights,
            )
            pipeline += aux_weights_node
            loss_inputs.append({0: aux_prediction, 1: aux_target, 2: aux_weights})
            snapshot_dataset_names[aux_weights] = f"{name}_weights"
        else:
            loss_inputs.append({0: aux_prediction, 1: aux_target})
        head_outputs.append({0: aux_prediction})
        aux_pred_gradient = aux_grad_keys[name]
        head_gradients.append({0: aux_pred_gradient})
    # raw: ([c,] d, h, w)
    # target: ([c,] d, h, w)
    # [weights: ([c,] d, h, w)]
    if channel_dims == 0:
        pipeline += AddChannelDim(raw)
    # raw: (c, d, h, w)
    # target: ([c,] d, h, w)
    # [weights: ([c,] d, h, w)]
    pipeline += gp.PreCache()
    pipeline += gp.Stack(batch_size)
    # raw: (b, c, d, h, w)
    # target: (b, [c,] d, h, w)
    # [weights: (b, [c,] d, h, w)]
    pipeline += Train(
        model=task.model,
        heads=[("opt", predictor)]
        + [(name, aux_pred) for name, aux_pred, _ in task.aux_tasks],
        losses=[task.loss] + [loss for _, _, loss in task.aux_tasks],
        optimizer=optimizer,
        inputs={"x": raw},
        outputs={0: model_outputs},
        head_outputs=[{0: prediction}] + head_outputs,
        loss_inputs=loss_inputs,
        gradients=[{0: model_output_grads}, {0: pred_gradients}] + head_gradients,
        save_every=1e6,
    )
    # raw: (b, c, d, h, w)
    # target: (b, [c,] d, h, w)
    # [weights: (b, [c,] d, h, w)]
    # prediction: (b, [c,] d, h, w)
    if snapshot_every > 0:
        # get channels first
        pipeline += TransposeDims(raw, (1, 0, 2, 3, 4))
        if predictor.target_channels > 0:
            pipeline += TransposeDims(target, (1, 0, 2, 3, 4))
            if weights_node:
                pipeline += TransposeDims(weights, (1, 0, 2, 3, 4))
        if predictor.prediction_channels > 0:
            pipeline += TransposeDims(prediction, (1, 0, 2, 3, 4))
        # raw: (c, b, d, h, w)
        # target: ([c,] b, d, h, w)
        # [weights: ([c,] b, d, h, w)]
        # prediction: ([c,] b, d, h, w)
        if channel_dims == 0:
            pipeline += RemoveChannelDim(raw)
        # raw: ([c,] b, d, h, w)
        # target: (c, b, d, h, w)
        # [weights: ([c,] b, d, h, w)]
        # prediction: (c, b, d, h, w)
        pipeline += gp.Snapshot(
            dataset_names=snapshot_dataset_names,
            every=snapshot_every,
            output_dir=os.path.join(outdir, "snapshots"),
            output_filename="{iteration}.hdf",
        )
    pipeline += gp.PrintProfilingStats(every=10)

    request = gp.BatchRequest()
    request.add(raw, input_size)
    request.add(gt, output_size)
    if mask_node is not None:
        request.add(mask, output_size)
    request.add(target, output_size)
    for name, _, _ in task.aux_tasks:
        aux_pred, aux_target, aux_weight = aux_keys[name]
        request.add(aux_pred, output_size)
        request.add(aux_target, output_size)
        if aux_weight is not None:
            request.add(aux_weight, output_size)
        aux_pred_grad = aux_grad_keys[name]
        request.add(aux_pred_grad, output_size)
    if weights_node:
        request.add(weights, output_size)
    request.add(prediction, output_size)
    request.add(pred_gradients, output_size)

    return pipeline, request
Пример #4
0
def create_pipeline_2d(
    task, data, predictor, optimizer, batch_size, outdir, snapshot_every
):

    raw_channels = data.raw.num_channels
    filename = data.raw.train.filename
    input_shape = predictor.input_shape
    output_shape = predictor.output_shape
    dataset_shape = data.raw.train.shape
    dataset_roi = data.raw.train.roi
    voxel_size = data.raw.train.voxel_size

    # switch to world units
    input_size = voxel_size * input_shape
    output_size = voxel_size * output_shape

    raw = gp.ArrayKey("RAW")
    gt = gp.ArrayKey("GT")
    target = gp.ArrayKey("TARGET")
    weights = gp.ArrayKey("WEIGHTS")
    prediction = gp.ArrayKey("PREDICTION")
    pred_gradients = gp.ArrayKey("PRED_GRADIENTS")

    channel_dims = 0 if raw_channels == 1 else 1
    data_dims = len(dataset_shape) - channel_dims

    if data_dims == 3:
        num_samples = dataset_shape[0]
        sample_shape = dataset_shape[channel_dims + 1 :]
    else:
        raise RuntimeError(
            "For 2D training, please provide a 3D array where "
            "the first dimension indexes the samples."
        )

    sample_shape = gp.Coordinate(sample_shape)
    sample_size = sample_shape * voxel_size

    # overwrite source ROI to treat samples as z dimension
    spec = gp.ArraySpec(
        roi=gp.Roi((0,) + dataset_roi.get_begin(), (num_samples,) + sample_size),
        voxel_size=(1,) + voxel_size,
    )
    sources = (
        data.raw.train.get_source(raw, overwrite_spec=spec),
        data.gt.train.get_source(gt, overwrite_spec=spec),
    )
    pipeline = sources + gp.MergeProvider()
    pipeline += gp.Pad(raw, None)
    pipeline += gp.Normalize(raw)
    # raw: ([c,] d=1, h, w)
    # gt: ([c,] d=1, h, w)
    pipeline += gp.RandomLocation()
    # raw: ([c,] d=1, h, w)
    # gt: ([c,] d=1, h, w)
    for augmentation in eval(task.augmentations):
        pipeline += augmentation
    pipeline += predictor.add_target(gt, target)
    # (don't care about gt anymore)
    # raw: ([c,] d=1, h, w)
    # target: ([c,] d=1, h, w)
    weights_node = task.loss.add_weights(target, weights)
    if weights_node:
        pipeline += weights_node
        loss_inputs = {0: prediction, 1: target, 2: weights}
    else:
        loss_inputs = {0: prediction, 1: target}
    # raw: ([c,] d=1, h, w)
    # target: ([c,] d=1, h, w)
    # [weights: ([c,] d=1, h, w)]
    # get rid of z dim:
    pipeline += Squash(dim=-3)
    # raw: ([c,] h, w)
    # target: ([c,] h, w)
    # [weights: ([c,] h, w)]
    if channel_dims == 0:
        pipeline += AddChannelDim(raw)
    # raw: (c, h, w)
    # target: ([c,] h, w)
    # [weights: ([c,] h, w)]
    pipeline += gp.PreCache()
    pipeline += gp.Stack(batch_size)
    # raw: (b, c, h, w)
    # target: (b, [c,] h, w)
    # [weights: (b, [c,] h, w)]
    pipeline += gp_torch.Train(
        model=predictor,
        loss=task.loss,
        optimizer=optimizer,
        inputs={"x": raw},
        loss_inputs=loss_inputs,
        outputs={0: prediction},
        gradients={0: pred_gradients},
        save_every=1e6,
    )
    # raw: (b, c, h, w)
    # target: (b, [c,] h, w)
    # [weights: (b, [c,] h, w)]
    # prediction: (b, [c,] h, w)
    if snapshot_every > 0:
        # get channels first
        pipeline += TransposeDims(raw, (1, 0, 2, 3))
        if predictor.target_channels > 0:
            pipeline += TransposeDims(target, (1, 0, 2, 3))
            if weights_node:
                pipeline += TransposeDims(weights, (1, 0, 2, 3))
        if predictor.prediction_channels > 0:
            pipeline += TransposeDims(prediction, (1, 0, 2, 3))
        # raw: (c, b, h, w)
        # target: ([c,] b, h, w)
        # [weights: ([c,] b, h, w)]
        # prediction: ([c,] b, h, w)
        if channel_dims == 0:
            pipeline += RemoveChannelDim(raw)
        # raw: ([c,] b, h, w)
        # target: ([c,] b, h, w)
        # [weights: ([c,] b, h, w)]
        # prediction: ([c,] b, h, w)
        pipeline += gp.Snapshot(
            dataset_names={
                raw: "raw",
                target: "target",
                prediction: "prediction",
                pred_gradients: "pred_gradients",
                weights: "weights",
            },
            every=snapshot_every,
            output_dir=os.path.join(outdir, "snapshots"),
            output_filename="{iteration}.hdf",
        )
    pipeline += gp.PrintProfilingStats(every=100)

    request = gp.BatchRequest()
    request.add(raw, input_size)
    request.add(gt, output_size)
    request.add(target, output_size)
    if weights_node:
        request.add(weights, output_size)
    request.add(prediction, output_size)
    request.add(pred_gradients, output_size)

    return pipeline, request
Пример #5
0
def train(iterations):

    ##################
    # DECLARE ARRAYS #
    ##################

    # raw intensities
    raw = gp.ArrayKey('RAW')

    # objects labelled with unique IDs
    gt_labels = gp.ArrayKey('LABELS')

    # array of per-voxel affinities to direct neighbors
    gt_affs = gp.ArrayKey('AFFINITIES')

    # weights to use to balance the loss
    loss_weights = gp.ArrayKey('LOSS_WEIGHTS')

    # the predicted affinities
    pred_affs = gp.ArrayKey('PRED_AFFS')

    # the gredient of the loss wrt to the predicted affinities
    pred_affs_gradients = gp.ArrayKey('PRED_AFFS_GRADIENTS')

    ####################
    # DECLARE REQUESTS #
    ####################

    with open('train_net_config.json', 'r') as f:
        net_config = json.load(f)

    # get the input and output size in world units (nm, in this case)
    voxel_size = gp.Coordinate((40, 4, 4))
    input_size = gp.Coordinate(net_config['input_shape']) * voxel_size
    output_size = gp.Coordinate(net_config['output_shape']) * voxel_size

    # formulate the request for what a batch should (at least) contain
    request = gp.BatchRequest()
    request.add(raw, input_size)
    request.add(gt_affs, output_size)
    request.add(loss_weights, output_size)

    # when we make a snapshot for inspection (see below), we also want to
    # request the predicted affinities and gradients of the loss wrt the
    # affinities
    snapshot_request = gp.BatchRequest()
    snapshot_request[pred_affs] = request[gt_affs]
    snapshot_request[pred_affs_gradients] = request[gt_affs]

    ##############################
    # ASSEMBLE TRAINING PIPELINE #
    ##############################

    pipeline = (

        # a tuple of sources, one for each sample (A, B, and C) provided by the
        # CREMI challenge
        tuple(

            # read batches from the HDF5 file
            gp.Hdf5Source('sample_' + s + '_padded_20160501.hdf',
                          datasets={
                              raw: 'volumes/raw',
                              gt_labels: 'volumes/labels/neuron_ids'
                          }) +

            # convert raw to float in [0, 1]
            gp.Normalize(raw) +

            # chose a random location for each requested batch
            gp.RandomLocation() for s in ['A', 'B', 'C']) +

        # chose a random source (i.e., sample) from the above
        gp.RandomProvider() +

        # elastically deform the batch
        gp.ElasticAugment([4, 40, 40], [0, 2, 2], [0, math.pi / 2.0],
                          prob_slip=0.05,
                          prob_shift=0.05,
                          max_misalign=25) +

        # apply transpose and mirror augmentations
        gp.SimpleAugment(transpose_only=[1, 2]) +

        # scale and shift the intensity of the raw array
        gp.IntensityAugment(raw,
                            scale_min=0.9,
                            scale_max=1.1,
                            shift_min=-0.1,
                            shift_max=0.1,
                            z_section_wise=True) +

        # grow a boundary between labels
        gp.GrowBoundary(gt_labels, steps=3, only_xy=True) +

        # convert labels into affinities between voxels
        gp.AddAffinities([[-1, 0, 0], [0, -1, 0], [0, 0, -1]], gt_labels,
                         gt_affs) +

        # create a weight array that balances positive and negative samples in
        # the affinity array
        gp.BalanceLabels(gt_affs, loss_weights) +

        # pre-cache batches from the point upstream
        gp.PreCache(cache_size=10, num_workers=5) +

        # perform one training iteration for each passing batch (here we use
        # the tensor names earlier stored in train_net.config)
        gp.tensorflow.Train(
            'train_net',
            net_config['optimizer'],
            net_config['loss'],
            inputs={
                net_config['raw']: raw,
                net_config['gt_affs']: gt_affs,
                net_config['loss_weights']: loss_weights
            },
            outputs={net_config['pred_affs']: pred_affs},
            gradients={net_config['pred_affs']: pred_affs_gradients},
            save_every=1) +

        # save the passing batch as an HDF5 file for inspection
        gp.Snapshot(
            {
                raw: '/volumes/raw',
                gt_labels: '/volumes/labels/neuron_ids',
                gt_affs: '/volumes/labels/affs',
                pred_affs: '/volumes/pred_affs',
                pred_affs_gradients: '/volumes/pred_affs_gradients'
            },
            output_dir='snapshots',
            output_filename='batch_{iteration}.hdf',
            every=100,
            additional_request=snapshot_request,
            compression_type='gzip') +

        # show a summary of time spend in each node every 10 iterations
        gp.PrintProfilingStats(every=10))

    #########
    # TRAIN #
    #########

    print("Training for", iterations, "iterations")

    with gp.build(pipeline):
        for i in range(iterations):
            pipeline.request_batch(request)

    print("Finished")
Пример #6
0
def train_until(max_iteration):

    # get the latest checkpoint
    if tf.train.latest_checkpoint("."):
        trained_until = int(tf.train.latest_checkpoint(".").split("_")[-1])
    else:
        trained_until = 0
        if trained_until >= max_iteration:
            return

    # array keys for fused volume
    raw = gp.ArrayKey("RAW")
    labels = gp.ArrayKey("LABELS")
    labels_fg = gp.ArrayKey("LABELS_FG")

    # array keys for base volume
    raw_base = gp.ArrayKey("RAW_BASE")
    labels_base = gp.ArrayKey("LABELS_BASE")
    swc_base = gp.PointsKey("SWC_BASE")
    swc_center_base = gp.PointsKey("SWC_CENTER_BASE")

    # array keys for add volume
    raw_add = gp.ArrayKey("RAW_ADD")
    labels_add = gp.ArrayKey("LABELS_ADD")
    swc_add = gp.PointsKey("SWC_ADD")
    swc_center_add = gp.PointsKey("SWC_CENTER_ADD")

    # output data
    fg = gp.ArrayKey("FG")
    gradient_fg = gp.ArrayKey("GRADIENT_FG")
    loss_weights = gp.ArrayKey("LOSS_WEIGHTS")

    voxel_size = gp.Coordinate((4, 1, 1))
    input_size = gp.Coordinate(net_config["input_shape"]) * voxel_size
    output_size = gp.Coordinate(net_config["output_shape"]) * voxel_size

    # add request
    request = gp.BatchRequest()
    request.add(raw, input_size)
    request.add(labels, output_size)
    request.add(labels_fg, output_size)
    request.add(loss_weights, output_size)
    request.add(swc_center_base, output_size)
    request.add(swc_center_add, output_size)

    # add snapshot request
    snapshot_request = gp.BatchRequest()
    snapshot_request.add(fg, output_size)
    snapshot_request.add(labels_fg, output_size)
    snapshot_request.add(gradient_fg, output_size)
    snapshot_request.add(raw_base, input_size)
    snapshot_request.add(raw_add, input_size)
    snapshot_request.add(labels_base, input_size)
    snapshot_request.add(labels_add, input_size)

    # data source for "base" volume
    data_sources_base = tuple(
        (
            gp.Hdf5Source(
                filename,
                datasets={raw_base: "/volume"},
                array_specs={
                    raw_base:
                    gp.ArraySpec(interpolatable=True,
                                 voxel_size=voxel_size,
                                 dtype=np.uint16)
                },
                channels_first=False,
            ),
            SwcSource(
                filename=filename,
                dataset="/reconstruction",
                points=(swc_center_base, swc_base),
                scale=voxel_size,
            ),
        ) + gp.MergeProvider() +
        gp.RandomLocation(ensure_nonempty=swc_center_base) + RasterizeSkeleton(
            points=swc_base,
            array=labels_base,
            array_spec=gp.ArraySpec(
                interpolatable=False, voxel_size=voxel_size, dtype=np.uint32),
            radius=5.0,
        ) for filename in files)

    # data source for "add" volume
    data_sources_add = tuple(
        (
            gp.Hdf5Source(
                file,
                datasets={raw_add: "/volume"},
                array_specs={
                    raw_add:
                    gp.ArraySpec(interpolatable=True,
                                 voxel_size=voxel_size,
                                 dtype=np.uint16)
                },
                channels_first=False,
            ),
            SwcSource(
                filename=file,
                dataset="/reconstruction",
                points=(swc_center_add, swc_add),
                scale=voxel_size,
            ),
        ) + gp.MergeProvider() +
        gp.RandomLocation(ensure_nonempty=swc_center_add) + RasterizeSkeleton(
            points=swc_add,
            array=labels_add,
            array_spec=gp.ArraySpec(
                interpolatable=False, voxel_size=voxel_size, dtype=np.uint32),
            radius=5.0,
        ) for file in files)
    data_sources = (
        (data_sources_base + gp.RandomProvider()),
        (data_sources_add + gp.RandomProvider()),
    ) + gp.MergeProvider()

    pipeline = (
        data_sources + FusionAugment(
            raw_base,
            raw_add,
            labels_base,
            labels_add,
            raw,
            labels,
            blend_mode="labels_mask",
            blend_smoothness=10,
            num_blended_objects=0,
        ) +
        # augment
        gp.ElasticAugment([40, 10, 10], [0.25, 1, 1], [0, math.pi / 2.0],
                          subsample=4) +
        gp.SimpleAugment(mirror_only=[1, 2], transpose_only=[1, 2]) +
        gp.Normalize(raw) + gp.IntensityAugment(raw, 0.9, 1.1, -0.001, 0.001) +
        BinarizeGt(labels, labels_fg) +
        gp.BalanceLabels(labels_fg, loss_weights) +
        # train
        gp.PreCache(cache_size=40, num_workers=10) + gp.tensorflow.Train(
            "./train_net",
            optimizer=net_names["optimizer"],
            loss=net_names["loss"],
            inputs={
                net_names["raw"]: raw,
                net_names["labels_fg"]: labels_fg,
                net_names["loss_weights"]: loss_weights,
            },
            outputs={net_names["fg"]: fg},
            gradients={net_names["fg"]: gradient_fg},
            save_every=100000,
        ) +
        # visualize
        gp.Snapshot(
            output_filename="snapshot_{iteration}.hdf",
            dataset_names={
                raw: "volumes/raw",
                raw_base: "volumes/raw_base",
                raw_add: "volumes/raw_add",
                labels: "volumes/labels",
                labels_base: "volumes/labels_base",
                labels_add: "volumes/labels_add",
                fg: "volumes/fg",
                labels_fg: "volumes/labels_fg",
                gradient_fg: "volumes/gradient_fg",
            },
            additional_request=snapshot_request,
            every=100,
        ) + gp.PrintProfilingStats(every=100))

    with gp.build(pipeline):

        print("Starting training...")
        for i in range(max_iteration - trained_until):
            pipeline.request_batch(request)
Пример #7
0
def batch_data_aug_generator(input_path,
                             batch_size=12,
                             voxel_shape=[1, 1, 1],
                             input_shape=[240, 240, 4],
                             output_shape=[240, 240, 4],
                             without_background=False,
                             mix_output=False,
                             validate=False,
                             aug=seq):
    raw = gp.ArrayKey('raw')
    gt = gp.ArrayKey('ground_truth')
    files = os.listdir(input_path)
    files = [os.path.join(input_path, f) for f in files]
    pipeline = (
        tuple(
            gp.ZarrSource(
                files[t],  # the zarr container
                {
                    raw: 'raw',
                    gt: 'ground_truth'
                },  # which dataset to associate to the array key
                {
                    raw:
                    gp.ArraySpec(interpolatable=True,
                                 dtype=np.dtype('float32'),
                                 voxel_size=voxel_shape),
                    gt:
                    gp.ArraySpec(interpolatable=True,
                                 dtype=np.dtype('float32'),
                                 voxel_size=voxel_shape)
                }  # meta-information
            ) + gp.RandomLocation()
            for t in range(len(files))) + gp.RandomProvider()
        #    +gp.Stack(batch_size)
    )
    input_size = gp.Coordinate(input_shape)
    output_size = gp.Coordinate(output_shape)

    request = gp.BatchRequest()
    request.add(raw, input_size)
    request.add(gt, input_size)
    diff = input_shape[1] - output_shape[1]
    diff = int(diff / 2)
    max_p = input_shape[1] - diff
    different_shape = diff > 0
    if different_shape:
        print('Difference padding: {}'.format(diff))
    with gp.build(pipeline):
        while 1:
            b = 0
            imgs = []
            masks = []
            while b < batch_size:
                valid = False
                batch = pipeline.request_batch(request)
                if validate:
                    valid = validate_mask(batch[gt].data)
                else:
                    valid = True

                while (valid == False):
                    batch = pipeline.request_batch(request)
                    valid = validate_mask(batch[gt].data)
                im = batch[raw].data
                out = batch[gt].data
                # im,out = augmentation(im,out,seq)
                if different_shape:
                    out = out[diff:max_p, diff:max_p, :]
                if without_background:
                    out = out[:, :, 1:4]
                if mix_output:
                    out = out.argmax(axis=3).astype(float)
                imgs.append(im)
                masks.append(out)
                b = b + 1
            yield augmentation(np.asarray(imgs), np.asarray(masks), seq)
Пример #8
0
def train_until(max_iteration, name='train_net', output_folder='.', clip_max=2000):

    # get the latest checkpoint
    if tf.train.latest_checkpoint(output_folder):
        trained_until = int(tf.train.latest_checkpoint(output_folder).split('_')[-1])
    else:
        trained_until = 0
        if trained_until >= max_iteration:
            return

    with open(os.path.join(output_folder, name + '_config.json'), 'r') as f:
        net_config = json.load(f)
    with open(os.path.join(output_folder, name + '_names.json'), 'r') as f:
        net_names = json.load(f)

    # array keys
    raw = gp.ArrayKey('RAW')
    gt_mask = gp.ArrayKey('GT_MASK')
    pred_mask = gp.ArrayKey('PRED_MASK')

    voxel_size = gp.Coordinate((1, 1, 1))
    input_shape = gp.Coordinate(net_config['input_shape'])
    output_shape = gp.Coordinate(net_config['output_shape'])
    context = gp.Coordinate(input_shape - output_shape) / 2

    request = gp.BatchRequest()
    request.add(raw, input_shape)
    request.add(gt_mask, output_shape)

    snapshot_request = gp.BatchRequest()
    snapshot_request.add(raw, input_shape)
    snapshot_request.add(gt_mask, output_shape)
    snapshot_request.add(pred_mask, output_shape)

    # specify data source
    data_sources = tuple()
    for data_file in data_files:
        current_path = os.path.join(data_dir, data_file)
        with h5py.File(current_path, 'r') as f:
            data_sources += tuple(
                gp.Hdf5Source(
                    current_path,
                    datasets={
                        raw: sample + '/raw',
                        gt_mask: sample + '/fg'
                    },
                    array_specs={
                        raw: gp.ArraySpec(interpolatable=True, dtype=np.uint16, voxel_size=voxel_size),
                        gt_mask: gp.ArraySpec(interpolatable=False, dtype=np.bool, voxel_size=voxel_size),
                    }
                ) +
                Convert(gt_mask, np.uint8) +
                gp.Pad(raw, context) +
                gp.Pad(gt_mask, context) +
                gp.RandomLocation()
                for sample in f)

    pipeline = (
            data_sources +
            gp.RandomProvider() +
            gp.Reject(gt_mask, min_masked=0.005, reject_probability=0.98) +
            nl.Clip(raw, 0, clip_max) +
            gp.Normalize(raw, factor=1.0/clip_max) +
            gp.ElasticAugment(
                control_point_spacing=[20, 20, 20],
                jitter_sigma=[1, 1, 1],
                rotation_interval=[0, math.pi/2.0],
                subsample=4) +
            gp.SimpleAugment(mirror_only=[1,2], transpose_only=[1,2]) +

            gp.IntensityAugment(raw, 0.9, 1.1, -0.1, 0.1) +
            gp.IntensityScaleShift(raw, 2,-1) +

            # train
            gp.PreCache(
                cache_size=40,
                num_workers=5) +
            gp.tensorflow.Train(
                os.path.join(output_folder, name),
                optimizer=net_names['optimizer'],
                loss=net_names['loss'],
                inputs={
                    net_names['raw']: raw,
                    net_names['gt']: gt_mask,
                },
                outputs={
                    net_names['pred']: pred_mask,
                },
                gradients={
                },
                save_every=5000) +

            # visualize
            gp.Snapshot({
                    raw: 'volumes/raw',
                    pred_mask: 'volumes/pred_mask',
                    gt_mask: 'volumes/gt_mask',
                },
                output_filename=os.path.join(output_folder, 'snapshots', 'batch_{iteration}.hdf'),
                additional_request=snapshot_request,
                every=2000) +
            gp.PrintProfilingStats(every=500)
    )

    with gp.build(pipeline):
        
        print("Starting training...")
        for i in range(max_iteration - trained_until):
            pipeline.request_batch(request)
Пример #9
0
def train_until(**kwargs):
    print("cuda visibile devices", os.environ["CUDA_VISIBLE_DEVICES"])
    if tf.train.latest_checkpoint(kwargs['output_folder']):
        trained_until = int(
            tf.train.latest_checkpoint(kwargs['output_folder']).split('_')[-1])
    else:
        trained_until = 0
    if trained_until >= kwargs['max_iteration']:
        return

    raw = gp.ArrayKey('RAW')
    raw_cropped = gp.ArrayKey('RAW_CROPPED')
    gt_labels = gp.ArrayKey('GT_LABELS')
    gt_instances = gp.ArrayKey('GT_INSTANCES')
    gt_affs = gp.ArrayKey('GT_AFFS')
    gt_numinst = gp.ArrayKey('GT_NUMINST')
    gt_fgbg = gp.ArrayKey('GT_FGBG')
    gt_sample_mask = gp.ArrayKey('GT_SAMPLE_MASK')

    pred_code = gp.ArrayKey('PRED_CODE')
    # pred_code_gradients = gp.ArrayKey('PRED_CODE_GRADIENTS')
    pred_numinst = gp.ArrayKey('PRED_NUMINST')
    pred_fgbg = gp.ArrayKey('PRED_FGBG')

    with open(os.path.join(kwargs['output_folder'],
                           kwargs['name'] + '_config.json'), 'r') as f:
        net_config = json.load(f)
    with open(os.path.join(kwargs['output_folder'],
                           kwargs['name'] + '_names.json'), 'r') as f:
        net_names = json.load(f)

    voxel_size = gp.Coordinate(kwargs['voxel_size'])
    input_shape_world = gp.Coordinate(net_config['input_shape'])*voxel_size
    output_shape_world = gp.Coordinate(net_config['output_shape'])*voxel_size
    context = gp.Coordinate(input_shape_world - output_shape_world) / 2

    raw_key = kwargs.get('raw_key', 'volumes/raw')

    # formulate the request for what a batch should (at least) contain
    request = gp.BatchRequest()
    request.add(raw, input_shape_world)
    request.add(raw_cropped, output_shape_world)
    request.add(gt_labels, output_shape_world)
    request.add(gt_instances, output_shape_world)
    request.add(gt_sample_mask, output_shape_world)
    request.add(gt_affs, output_shape_world)
    if kwargs['overlapping_inst']:
        request.add(gt_numinst, output_shape_world)
    else:
        request.add(gt_fgbg, output_shape_world)
    # request.add(loss_weights_affs, output_shape_world)

    # when we make a snapshot for inspection (see below), we also want to
    # request the predicted affinities and gradients of the loss wrt the
    # affinities
    snapshot_request = gp.BatchRequest()
    snapshot_request.add(raw_cropped, output_shape_world)
    snapshot_request.add(pred_code, output_shape_world)
    # snapshot_request.add(pred_code_gradients, output_shape_world)
    if kwargs['overlapping_inst']:
        snapshot_request.add(pred_numinst, output_shape_world)
    else:
        snapshot_request.add(pred_fgbg, output_shape_world)

    if kwargs['input_format'] != "hdf" and kwargs['input_format'] != "zarr":
        raise NotImplementedError("train node for %s not implemented yet",
                                  kwargs['input_format'])

    fls = []
    shapes = []
    for f in kwargs['data_files']:
        fls.append(os.path.splitext(f)[0])
        if kwargs['input_format'] == "hdf":
            vol = h5py.File(f, 'r')['volumes/raw_bf']
        elif kwargs['input_format'] == "zarr":
            vol = zarr.open(f, 'r')['volumes/raw_bf']
        shapes.append(vol.shape)
        if vol.dtype != np.float32:
            print("please convert to float32")
    ln = len(fls)
    print("first 5 files: ", fls[0:4])

    if kwargs['input_format'] == "hdf":
        sourceNode = gp.Hdf5Source
    elif kwargs['input_format'] == "zarr":
        sourceNode = gp.ZarrSource

    neighborhood = []
    psH = np.array(kwargs['patchshape'])//2
    for i in range(-psH[1], psH[1]+1, kwargs['patchstride'][1]):
        for j in range(-psH[2], psH[2]+1, kwargs['patchstride'][2]):
            neighborhood.append([i,j])

    datasets = {
        raw: 'volumes/raw_bf',
        gt_labels: 'volumes/gt_labels',
        gt_instances: 'volumes/gt_instances',
    }
    array_specs = {
        raw: gp.ArraySpec(interpolatable=True),
        gt_labels: gp.ArraySpec(interpolatable=False),
        gt_instances: gp.ArraySpec(interpolatable=False),
    }
    inputs = {
        net_names['raw']: raw,
        net_names['gt_affs']: gt_affs,
    }

    outputs = {
        net_names['pred_code']: pred_code,
        net_names['raw_cropped']: raw_cropped,
    }
    snapshot = {
        raw: '/volumes/raw',
        raw_cropped: 'volumes/raw_cropped',
        gt_affs: '/volumes/gt_affs',
        pred_code: '/volumes/pred_code',
        # pred_code_gradients: '/volumes/pred_code_gradients',
    }
    if kwargs['overlapping_inst']:
        datasets[gt_numinst] = '/volumes/gt_numinst'
        array_specs[gt_numinst] = gp.ArraySpec(interpolatable=False)
        inputs[net_names['gt_numinst']] = gt_numinst
        outputs[net_names['pred_numinst']] = pred_numinst
        snapshot[pred_numinst] = '/volumes/pred_numinst'
    else:
        datasets[gt_fgbg] = '/volumes/gt_fgbg'
        array_specs[gt_fgbg] = gp.ArraySpec(interpolatable=False)
        inputs[net_names['gt_fgbg']] = gt_fgbg
        outputs[net_names['pred_fgbg']] = pred_fgbg
        snapshot[pred_fgbg] = '/volumes/pred_fgbg'

    augmentation = kwargs['augmentation']
    sampling = kwargs['sampling']

    source_fg = tuple(
        sourceNode(
            fls[t] + "." + kwargs['input_format'],
            datasets=datasets,
            array_specs=array_specs
        ) +
        gp.Pad(raw, context) +

        # chose a random location for each requested batch
        nl.CountOverlap(gt_labels, gt_sample_mask, maxnuminst=1) +
        gp.RandomLocation(
            min_masked=sampling['min_masked'],
            mask=gt_sample_mask
        )
        for t in range(ln)
    )
    source_fg += gp.RandomProvider()

    if kwargs['overlapping_inst']:
        source_overlap = tuple(
            sourceNode(
                fls[t] + "." + kwargs['input_format'],
                datasets=datasets,
                array_specs=array_specs
            ) +
            gp.Pad(raw, context) +

            # chose a random location for each requested batch
            nl.MaskCloseDistanceToOverlap(
                gt_labels, gt_sample_mask,
                sampling['overlap_min_dist'],
                sampling['overlap_max_dist']
            ) +
            gp.RandomLocation(
                min_masked=sampling['min_masked_overlap'],
                mask=gt_sample_mask
            )
            for t in range(ln)
        )
        source_overlap += gp.RandomProvider()

        source = (
            (source_fg, source_overlap) +

            # chose a random source (i.e., sample) from the above
            gp.RandomProvider(probabilities=[sampling['probability_fg'],
                                             sampling['probability_overlap']]))
    else:
        source = source_fg

    pipeline = (
        source +

        # elastically deform the batch
        gp.ElasticAugment(
            augmentation['elastic']['control_point_spacing'],
            augmentation['elastic']['jitter_sigma'],
            [augmentation['elastic']['rotation_min']*np.pi/180.0,
             augmentation['elastic']['rotation_max']*np.pi/180.0]) +

        gp.Reject(gt_sample_mask, min_masked=0.002, reject_probability=1) +

        # apply transpose and mirror augmentations
        gp.SimpleAugment(
            mirror_only=augmentation['simple'].get("mirror"),
            transpose_only=augmentation['simple'].get("transpose")) +

        # # scale and shift the intensity of the raw array
        gp.IntensityAugment(
            raw,
            scale_min=augmentation['intensity']['scale'][0],
            scale_max=augmentation['intensity']['scale'][1],
            shift_min=augmentation['intensity']['shift'][0],
            shift_max=augmentation['intensity']['shift'][1],
            z_section_wise=False) +

        gp.IntensityScaleShift(raw, 2, -1) +

        # convert labels into affinities between voxels
        nl.AddAffinities(
            neighborhood,
            gt_labels if kwargs['overlapping_inst'] else gt_instances,
            gt_affs,
            multiple_labels=kwargs['overlapping_inst']) +

        # pre-cache batches from the point upstream
        gp.PreCache(
            cache_size=kwargs['cache_size'],
            num_workers=kwargs['num_workers']) +

        # perform one training iteration for each passing batch (here we use
        # the tensor names earlier stored in train_net.config)
        gp.tensorflow.Train(
            os.path.join(kwargs['output_folder'], kwargs['name']),
            optimizer=net_names['optimizer'],
            summary=net_names['summaries'],
            log_dir=kwargs['output_folder'],
            loss=net_names['loss'],
            inputs=inputs,
            outputs=outputs,
            gradients={
                # net_names['pred_code']: pred_code_gradients,
            },
            save_every=kwargs['checkpoints']) +

        # save the passing batch as an HDF5 file for inspection
        gp.Snapshot(
            snapshot,
            output_dir=os.path.join(kwargs['output_folder'], 'snapshots'),
            output_filename='batch_{iteration}.hdf',
            every=kwargs['snapshots'],
            additional_request=snapshot_request,
            compression_type='gzip') +

        # show a summary of time spend in each node every 10 iterations
        gp.PrintProfilingStats(every=kwargs['profiling'])
    )

    #########
    # TRAIN #
    #########
    print("Starting training...")
    with gp.build(pipeline):
        print(pipeline)
        for i in range(trained_until, kwargs['max_iteration']):
            # print("request", request)
            start = time.time()
            pipeline.request_batch(request)
            time_of_iteration = time.time() - start

            logger.info(
                "Batch: iteration=%d, time=%f",
                i, time_of_iteration)
            # exit()
    print("Training finished")
Пример #10
0
def train_until(max_iteration, name='train_net', output_folder='.', clip_max=2000):

    # get the latest checkpoint
    if tf.train.latest_checkpoint(output_folder):
        trained_until = int(tf.train.latest_checkpoint(output_folder).split('_')[-1])
    else:
        trained_until = 0
        if trained_until >= max_iteration:
            return

    with open(os.path.join(output_folder, name + '_config.json'), 'r') as f:
        net_config = json.load(f)
    with open(os.path.join(output_folder, name + '_names.json'), 'r') as f:
        net_names = json.load(f)

    # array keys
    raw = gp.ArrayKey('RAW')
    gt_instances = gp.ArrayKey('GT_INSTANCES')
    gt_mask = gp.ArrayKey('GT_MASK')
    pred_mask = gp.ArrayKey('PRED_MASK')
    #loss_weights = gp.ArrayKey('LOSS_WEIGHTS')
    loss_gradients = gp.ArrayKey('LOSS_GRADIENTS')

    # array keys for base and add volume
    raw_base = gp.ArrayKey('RAW_BASE')
    gt_instances_base = gp.ArrayKey('GT_INSTANCES_BASE')
    gt_mask_base = gp.ArrayKey('GT_MASK_BASE')
    raw_add = gp.ArrayKey('RAW_ADD')
    gt_instances_add = gp.ArrayKey('GT_INSTANCES_ADD')
    gt_mask_add = gp.ArrayKey('GT_MASK_ADD')

    voxel_size = gp.Coordinate((1, 1, 1))
    input_shape = gp.Coordinate(net_config['input_shape'])
    output_shape = gp.Coordinate(net_config['output_shape'])
    context = gp.Coordinate(input_shape - output_shape) / 2

    request = gp.BatchRequest()
    request.add(raw, input_shape)
    request.add(gt_instances, output_shape)
    request.add(gt_mask, output_shape)
    #request.add(loss_weights, output_shape)
    request.add(raw_base, input_shape)
    request.add(raw_add, input_shape)
    request.add(gt_mask_base, output_shape)
    request.add(gt_mask_add, output_shape)

    snapshot_request = gp.BatchRequest()
    snapshot_request.add(raw, input_shape)
    #snapshot_request.add(raw_base, input_shape)
    #snapshot_request.add(raw_add, input_shape)
    snapshot_request.add(gt_mask, output_shape)
    #snapshot_request.add(gt_mask_base, output_shape)
    #snapshot_request.add(gt_mask_add, output_shape)
    snapshot_request.add(pred_mask, output_shape)
    snapshot_request.add(loss_gradients, output_shape)

    # specify data source
    # data source for base volume
    data_sources_base = tuple()
    for data_file in data_files:
        current_path = os.path.join(data_dir, data_file)
        with h5py.File(current_path, 'r') as f:
            data_sources_base += tuple(
                gp.Hdf5Source(
                    current_path,
                    datasets={
                        raw_base: sample + '/raw',
                        gt_instances_base: sample + '/gt',
                        gt_mask_base: sample + '/fg',
                    },
                    array_specs={
                        raw_base: gp.ArraySpec(interpolatable=True, dtype=np.uint16, voxel_size=voxel_size),
                        gt_instances_base: gp.ArraySpec(interpolatable=False, dtype=np.uint16, voxel_size=voxel_size),
                        gt_mask_base: gp.ArraySpec(interpolatable=False, dtype=np.bool, voxel_size=voxel_size),
                    }
                ) +
                Convert(gt_mask_base, np.uint8) +
                gp.Pad(raw_base, context) +
                gp.Pad(gt_instances_base, context) +
                gp.Pad(gt_mask_base, context) +
                gp.RandomLocation(min_masked=0.005,  mask=gt_mask_base)
                #gp.Reject(gt_mask_base, min_masked=0.005, reject_probability=1.)
                for sample in f)
    data_sources_base += gp.RandomProvider()

    # data source for add volume
    data_sources_add = tuple()
    for data_file in data_files:
        current_path = os.path.join(data_dir, data_file)
        with h5py.File(current_path, 'r') as f:
            data_sources_add += tuple(
                gp.Hdf5Source(
                    current_path,
                    datasets={
                        raw_add: sample + '/raw',
                        gt_instances_add: sample + '/gt',
                        gt_mask_add: sample + '/fg',
                    },
                    array_specs={
                        raw_add: gp.ArraySpec(interpolatable=True, dtype=np.uint16, voxel_size=voxel_size),
                        gt_instances_add: gp.ArraySpec(interpolatable=False, dtype=np.uint16, voxel_size=voxel_size),
                        gt_mask_add: gp.ArraySpec(interpolatable=False, dtype=np.bool, voxel_size=voxel_size),
                    }
                ) +
                Convert(gt_mask_add, np.uint8) +
                gp.Pad(raw_add, context) +
                gp.Pad(gt_instances_add, context) +
                gp.Pad(gt_mask_add, context) +
                gp.RandomLocation() +
                gp.Reject(gt_mask_add, min_masked=0.005, reject_probability=0.95)
                for sample in f)
    data_sources_add += gp.RandomProvider()
    data_sources = tuple([data_sources_base, data_sources_add]) + gp.MergeProvider()

    pipeline = (
            data_sources +
            nl.FusionAugment(
                raw_base, raw_add, gt_instances_base, gt_instances_add, raw, gt_instances,
                blend_mode='labels_mask', blend_smoothness=5, num_blended_objects=0
            ) +
            BinarizeLabels(gt_instances, gt_mask) +
            nl.Clip(raw, 0, clip_max) +
            gp.Normalize(raw, factor=1.0/clip_max) +
            gp.ElasticAugment(
                control_point_spacing=[20, 20, 20],
                jitter_sigma=[1, 1, 1],
                rotation_interval=[0, math.pi/2.0],
                subsample=4) +
            gp.SimpleAugment(mirror_only=[1, 2], transpose_only=[1, 2]) +

            gp.IntensityAugment(raw, 0.9, 1.1, -0.1, 0.1) +
            gp.IntensityScaleShift(raw, 2, -1) +
            #gp.BalanceLabels(gt_mask, loss_weights) +

            # train
            gp.PreCache(
                cache_size=40,
                num_workers=10) +
            gp.tensorflow.Train(
                os.path.join(output_folder, name),
                optimizer=net_names['optimizer'],
                loss=net_names['loss'],
                inputs={
                    net_names['raw']: raw,
                    net_names['gt']: gt_mask,
                    #net_names['loss_weights']: loss_weights,
                },
                outputs={
                    net_names['pred']: pred_mask,
                },
                gradients={
                    net_names['output']: loss_gradients,
                },
                save_every=5000) +

            # visualize
            gp.Snapshot({
                    raw: 'volumes/raw',
                    pred_mask: 'volumes/pred_mask',
                    gt_mask: 'volumes/gt_mask',
                    #loss_weights: 'volumes/loss_weights',
                    loss_gradients: 'volumes/loss_gradients',
                },
                output_filename=os.path.join(output_folder, 'snapshots', 'batch_{iteration}.hdf'),
                additional_request=snapshot_request,
                every=2500) +
            gp.PrintProfilingStats(every=1000)
    )

    with gp.build(pipeline):
        
        print("Starting training...")
        for i in range(max_iteration - trained_until):
            pipeline.request_batch(request)
Пример #11
0
def train_until(**kwargs):
    if tf.train.latest_checkpoint(kwargs['output_folder']):
        trained_until = int(
            tf.train.latest_checkpoint(kwargs['output_folder']).split('_')[-1])
    else:
        trained_until = 0
    if trained_until >= kwargs['max_iteration']:
        return

    anchor = gp.ArrayKey('ANCHOR')
    raw = gp.ArrayKey('RAW')
    raw_cropped = gp.ArrayKey('RAW_CROPPED')

    points = gp.PointsKey('POINTS')
    gt_cp = gp.ArrayKey('GT_CP')
    pred_cp = gp.ArrayKey('PRED_CP')
    pred_cp_gradients = gp.ArrayKey('PRED_CP_GRADIENTS')

    with open(
            os.path.join(kwargs['output_folder'],
                         kwargs['name'] + '_config.json'), 'r') as f:
        net_config = json.load(f)
    with open(
            os.path.join(kwargs['output_folder'],
                         kwargs['name'] + '_names.json'), 'r') as f:
        net_names = json.load(f)

    voxel_size = gp.Coordinate(kwargs['voxel_size'])
    input_shape_world = gp.Coordinate(net_config['input_shape']) * voxel_size
    output_shape_world = gp.Coordinate(net_config['output_shape']) * voxel_size

    # formulate the request for what a batch should (at least) contain
    request = gp.BatchRequest()
    request.add(raw, input_shape_world)
    request.add(raw_cropped, output_shape_world)
    request.add(gt_cp, output_shape_world)
    request.add(anchor, output_shape_world)

    # when we make a snapshot for inspection (see below), we also want to
    # request the predicted affinities and gradients of the loss wrt the
    # affinities
    snapshot_request = gp.BatchRequest()
    snapshot_request.add(raw_cropped, output_shape_world)
    snapshot_request.add(gt_cp, output_shape_world)
    snapshot_request.add(pred_cp, output_shape_world)
    # snapshot_request.add(pred_cp_gradients, output_shape_world)

    if kwargs['input_format'] != "hdf" and kwargs['input_format'] != "zarr":
        raise NotImplementedError("train node for %s not implemented yet",
                                  kwargs['input_format'])

    fls = []
    shapes = []
    mn = []
    mx = []
    for f in kwargs['data_files']:
        fls.append(os.path.splitext(f)[0])
        if kwargs['input_format'] == "hdf":
            vol = h5py.File(f, 'r')['volumes/raw']
        elif kwargs['input_format'] == "zarr":
            vol = zarr.open(f, 'r')['volumes/raw']
        print(f, vol.shape, vol.dtype)
        shapes.append(vol.shape)
        mn.append(np.min(vol))
        mx.append(np.max(vol))
        if vol.dtype != np.float32:
            print("please convert to float32")
    ln = len(fls)
    print("first 5 files: ", fls[0:4])

    if kwargs['input_format'] == "hdf":
        sourceNode = gp.Hdf5Source
    elif kwargs['input_format'] == "zarr":
        sourceNode = gp.ZarrSource

    augmentation = kwargs['augmentation']
    sources = tuple(
        (sourceNode(fls[t] + "." + kwargs['input_format'],
                    datasets={
                        raw: 'volumes/raw',
                        anchor: 'volumes/gt_fgbg',
                    },
                    array_specs={
                        raw: gp.ArraySpec(interpolatable=True),
                        anchor: gp.ArraySpec(interpolatable=False)
                    }),
         gp.CsvIDPointsSource(fls[t] + ".csv",
                              points,
                              points_spec=gp.PointsSpec(
                                  roi=gp.Roi(gp.Coordinate((
                                      0, 0, 0)), gp.Coordinate(shapes[t]))))) +
        gp.MergeProvider()
        # + Clip(raw, mn=mn[t], mx=mx[t])
        # + NormalizeMinMax(raw, mn=mn[t], mx=mx[t])
        + gp.Pad(raw, None) + gp.Pad(points, None)

        # chose a random location for each requested batch
        + gp.RandomLocation() for t in range(ln))
    pipeline = (
        sources +

        # chose a random source (i.e., sample) from the above
        gp.RandomProvider() +

       # elastically deform the batch
        (gp.ElasticAugment(
            augmentation['elastic']['control_point_spacing'],
            augmentation['elastic']['jitter_sigma'],
            [augmentation['elastic']['rotation_min']*np.pi/180.0,
             augmentation['elastic']['rotation_max']*np.pi/180.0],
            subsample=augmentation['elastic'].get('subsample', 1)) \
        if augmentation.get('elastic') is not None else NoOp())  +

        # apply transpose and mirror augmentations
        gp.SimpleAugment(mirror_only=augmentation['simple'].get("mirror"),
                         transpose_only=augmentation['simple'].get("transpose")) +
        # (gp.SimpleAugment(
        #     mirror_only=augmentation['simple'].get("mirror"),
        #     transpose_only=augmentation['simple'].get("transpose")) \
        # if augmentation.get('simple') is not None and \
        #    augmentation.get('simple') != {} else NoOp())  +

        # # scale and shift the intensity of the raw array
        (gp.IntensityAugment(
            raw,
            scale_min=augmentation['intensity']['scale'][0],
            scale_max=augmentation['intensity']['scale'][1],
            shift_min=augmentation['intensity']['shift'][0],
            shift_max=augmentation['intensity']['shift'][1],
            z_section_wise=False) \
        if augmentation.get('intensity') is not None and \
           augmentation.get('intensity') != {} else NoOp())  +

        gp.RasterizePoints(
            points,
            gt_cp,
            array_spec=gp.ArraySpec(voxel_size=voxel_size),
            settings=gp.RasterizationSettings(
                radius=(2, 2, 2),
                mode='peak')) +

        # pre-cache batches from the point upstream
        gp.PreCache(
            cache_size=kwargs['cache_size'],
            num_workers=kwargs['num_workers']) +

        # perform one training iteration for each passing batch (here we use
        # the tensor names earlier stored in train_net.config)
        gp.tensorflow.Train(
            os.path.join(kwargs['output_folder'], kwargs['name']),
            optimizer=net_names['optimizer'],
            summary=net_names['summaries'],
            log_dir=kwargs['output_folder'],
            loss=net_names['loss'],
            inputs={
                net_names['raw']: raw,
                net_names['gt_cp']: gt_cp,
                net_names['anchor']: anchor,
            },
            outputs={
                net_names['pred_cp']: pred_cp,
                net_names['raw_cropped']: raw_cropped,
            },
            gradients={
                # net_names['pred_cp']: pred_cp_gradients,
            },
            save_every=kwargs['checkpoints']) +

        # save the passing batch as an HDF5 file for inspection
        gp.Snapshot(
            {
                raw: '/volumes/raw',
                raw_cropped: 'volumes/raw_cropped',
                gt_cp: '/volumes/gt_cp',
                pred_cp: '/volumes/pred_cp',
                # pred_cp_gradients: '/volumes/pred_cp_gradients',
            },
            output_dir=os.path.join(kwargs['output_folder'], 'snapshots'),
            output_filename='batch_{iteration}.hdf',
            every=kwargs['snapshots'],
            additional_request=snapshot_request,
            compression_type='gzip') +

        # show a summary of time spend in each node every 10 iterations
        gp.PrintProfilingStats(every=kwargs['profiling'])
    )

    #########
    # TRAIN #
    #########
    print("Starting training...")
    with gp.build(pipeline):
        print(pipeline)
        for i in range(trained_until, kwargs['max_iteration']):
            # print("request", request)
            start = time.time()
            pipeline.request_batch(request)
            time_of_iteration = time.time() - start

            logger.info("Batch: iteration=%d, time=%f", i, time_of_iteration)
            # exit()
    print("Training finished")
Пример #12
0
    def create_train_pipeline(self, model):

        optimizer = self.params['optimizer'](model.parameters(),
                                             **self.params['optimizer_kwargs'])

        filename = self.params['data_file']
        datasets = self.params['dataset']

        raw_0 = gp.ArrayKey('RAW_0')
        points_0 = gp.GraphKey('POINTS_0')
        locations_0 = gp.ArrayKey('LOCATIONS_0')
        emb_0 = gp.ArrayKey('EMBEDDING_0')
        raw_1 = gp.ArrayKey('RAW_1')
        points_1 = gp.GraphKey('POINTS_1')
        locations_1 = gp.ArrayKey('LOCATIONS_1')
        emb_1 = gp.ArrayKey('EMBEDDING_1')

        data = daisy.open_ds(filename, datasets[0])
        source_roi = gp.Roi(data.roi.get_offset(), data.roi.get_shape())
        voxel_size = gp.Coordinate(data.voxel_size)

        # Get in and out shape
        in_shape = gp.Coordinate(model.in_shape)
        out_shape = gp.Coordinate(model.out_shape[2:])
        is_2d = in_shape.dims() == 2

        emb_voxel_size = voxel_size

        cv_loss = ContrastiveVolumeLoss(self.params['temperature'],
                                        self.params['point_density'],
                                        out_shape * voxel_size)

        # Add fake 3rd dim
        if is_2d:
            in_shape = gp.Coordinate((1, *in_shape))
            out_shape = gp.Coordinate((1, *out_shape))
            voxel_size = gp.Coordinate((1, *voxel_size))
            source_roi = gp.Roi((0, *source_roi.get_offset()),
                                (data.shape[0], *source_roi.get_shape()))

        in_shape = in_shape * voxel_size
        out_shape = out_shape * voxel_size

        logger.info(f"source roi: {source_roi}")
        logger.info(f"in_shape: {in_shape}")
        logger.info(f"out_shape: {out_shape}")
        logger.info(f"voxel_size: {voxel_size}")

        request = gp.BatchRequest()
        request.add(raw_0, in_shape)
        request.add(raw_1, in_shape)
        request.add(points_0, out_shape)
        request.add(points_1, out_shape)
        request[locations_0] = gp.ArraySpec(nonspatial=True)
        request[locations_1] = gp.ArraySpec(nonspatial=True)

        snapshot_request = gp.BatchRequest()
        snapshot_request[emb_0] = gp.ArraySpec(roi=request[points_0].roi)
        snapshot_request[emb_1] = gp.ArraySpec(roi=request[points_1].roi)

        random_point_generator = RandomPointGenerator(
            density=self.params['point_density'], repetitions=2)

        # Use volume to calculate probabilities, RandomSourceGenerator will
        # normalize volumes to probablilties
        probabilities = np.array([
            np.product(daisy.open_ds(filename, dataset).shape)
            for dataset in datasets
        ])
        random_source_generator = RandomSourceGenerator(
            num_sources=len(datasets),
            probabilities=probabilities,
            repetitions=2)

        array_sources = tuple(
            tuple(
                gp.ZarrSource(
                    filename,
                    {raw: dataset},
                    # fake 3D data
                    array_specs={
                        raw:
                        gp.ArraySpec(roi=source_roi,
                                     voxel_size=voxel_size,
                                     interpolatable=True)
                    }) for dataset in datasets) for raw in [raw_0, raw_1])

        # Choose a random dataset to pull from
        array_sources = \
            tuple(arrays +
                  RandomMultiBranchSource(random_source_generator) +
                  gp.Normalize(raw, self.params['norm_factor']) +
                  gp.Pad(raw, None)
                  for raw, arrays
                  in zip([raw_0, raw_1], array_sources))

        point_sources = tuple(
            (RandomPointSource(points_0,
                               random_point_generator=random_point_generator),
             RandomPointSource(points_1,
                               random_point_generator=random_point_generator)))

        # Merge the point and array sources together.
        # There is one array and point source per branch.
        sources = tuple((array_source, point_source) + gp.MergeProvider()
                        for array_source, point_source in zip(
                            array_sources, point_sources))

        sources = tuple(
            self._make_train_augmentation_pipeline(raw, source)
            for raw, source in zip([raw_0, raw_1], sources))

        pipeline = (sources + gp.MergeProvider() + gp.Crop(raw_0, source_roi) +
                    gp.Crop(raw_1, source_roi) + gp.RandomLocation() +
                    PrepareBatch(raw_0, raw_1, points_0, points_1, locations_0,
                                 locations_1, is_2d) +
                    RejectArray(ensure_nonempty=locations_0) +
                    RejectArray(ensure_nonempty=locations_1))

        if not is_2d:
            pipeline = (pipeline + AddChannelDim(raw_0) + AddChannelDim(raw_1))

        pipeline = (pipeline + gp.PreCache() + gp.torch.Train(
            model,
            cv_loss,
            optimizer,
            inputs={
                'raw_0': raw_0,
                'raw_1': raw_1
            },
            loss_inputs={
                'emb_0': emb_0,
                'emb_1': emb_1,
                'locations_0': locations_0,
                'locations_1': locations_1
            },
            outputs={
                2: emb_0,
                3: emb_1
            },
            array_specs={
                emb_0: gp.ArraySpec(voxel_size=emb_voxel_size),
                emb_1: gp.ArraySpec(voxel_size=emb_voxel_size)
            },
            checkpoint_basename=self.logdir + '/contrastive/checkpoints/model',
            save_every=self.params['save_every'],
            log_dir=self.logdir + "/contrastive",
            log_every=self.log_every))

        if is_2d:
            pipeline = (
                pipeline +
                # everything is 3D, except emb_0 and emb_1
                AddSpatialDim(emb_0) + AddSpatialDim(emb_1))

        pipeline = (
            pipeline +
            # now everything is 3D
            RemoveChannelDim(raw_0) + RemoveChannelDim(raw_1) +
            RemoveChannelDim(emb_0) + RemoveChannelDim(emb_1) +
            gp.Snapshot(output_dir=self.logdir + '/contrastive/snapshots',
                        output_filename='it{iteration}.hdf',
                        dataset_names={
                            raw_0: 'raw_0',
                            raw_1: 'raw_1',
                            locations_0: 'locations_0',
                            locations_1: 'locations_1',
                            emb_0: 'emb_0',
                            emb_1: 'emb_1'
                        },
                        additional_request=snapshot_request,
                        every=self.params['save_every']) +
            gp.PrintProfilingStats(every=500))

        return pipeline, request
def train_until(**kwargs):
    print("cuda visibile devices", os.environ["CUDA_VISIBLE_DEVICES"])
    if tf.train.latest_checkpoint(kwargs['output_folder']):
        trained_until = int(
            tf.train.latest_checkpoint(kwargs['output_folder']).split('_')[-1])
    else:
        trained_until = 0
    if trained_until >= kwargs['max_iteration']:
        return

    anchor = gp.ArrayKey('ANCHOR')
    raw = gp.ArrayKey('RAW')
    raw_cropped = gp.ArrayKey('RAW_CROPPED')
    gt_labels = gp.ArrayKey('GT_LABELS')
    gt_affs = gp.ArrayKey('GT_AFFS')

    pred_affs = gp.ArrayKey('PRED_AFFS')
    pred_affs_gradients = gp.ArrayKey('PRED_AFFS_GRADIENTS')

    with open(
            os.path.join(kwargs['output_folder'],
                         kwargs['name'] + '_config.json'), 'r') as f:
        net_config = json.load(f)
    with open(
            os.path.join(kwargs['output_folder'],
                         kwargs['name'] + '_names.json'), 'r') as f:
        net_names = json.load(f)

    voxel_size = gp.Coordinate(kwargs['voxel_size'])
    input_shape_world = gp.Coordinate(net_config['input_shape']) * voxel_size
    output_shape_world = gp.Coordinate(net_config['output_shape']) * voxel_size

    # formulate the request for what a batch should (at least) contain
    request = gp.BatchRequest()

    # when we make a snapshot for inspection (see below), we also want to
    # request the predicted affinities and gradients of the loss wrt the
    # affinities
    snapshot_request = gp.BatchRequest()
    snapshot_request.add(raw_cropped, output_shape_world)
    snapshot_request.add(pred_affs, output_shape_world)
    snapshot_request.add(gt_affs, output_shape_world)

    if kwargs['input_format'] != "hdf" and kwargs['input_format'] != "zarr":
        raise NotImplementedError("train node for %s not implemented yet",
                                  kwargs['input_format'])

    fls = []
    for f in kwargs['data_files']:
        fls.append(os.path.splitext(f)[0])
    ln = len(fls)
    print("first 5 files: ", fls[0:4])

    if kwargs['input_format'] == "hdf":
        sourceNode = gp.Hdf5Source
    elif kwargs['input_format'] == "zarr":
        sourceNode = gp.ZarrSource

    neighborhood = []
    psH = np.array(kwargs['patchshape']) // 2
    for i in range(-psH[0], psH[0] + 1, kwargs['patchstride'][0]):
        for j in range(-psH[1], psH[1] + 1, kwargs['patchstride'][1]):
            for k in range(-psH[2], psH[2] + 1, kwargs['patchstride'][2]):
                neighborhood.append([i, j, k])

    datasets = {
        raw: 'volumes/raw',
        gt_labels: 'volumes/gt_labels',
        anchor: 'volumes/gt_fgbg',
    }
    input_specs = {
        raw:
        gp.ArraySpec(roi=gp.Roi((0, ) * len(input_shape_world),
                                input_shape_world),
                     interpolatable=True,
                     dtype=np.float32),
        gt_labels:
        gp.ArraySpec(roi=gp.Roi((0, ) * len(output_shape_world),
                                output_shape_world),
                     interpolatable=False,
                     dtype=np.uint16),
        anchor:
        gp.ArraySpec(roi=gp.Roi((0, ) * len(output_shape_world),
                                output_shape_world),
                     interpolatable=False,
                     dtype=np.uint8),
        gt_affs:
        gp.ArraySpec(roi=gp.Roi((0, ) * len(output_shape_world),
                                output_shape_world),
                     interpolatable=False,
                     dtype=np.uint8)
    }
    inputs = {
        net_names['raw']: raw,
        net_names['gt_affs']: gt_affs,
        net_names['anchor']: anchor,
    }

    outputs = {
        net_names['pred_affs']: pred_affs,
        net_names['raw_cropped']: raw_cropped,
    }
    snapshot = {
        raw_cropped: 'volumes/raw_cropped',
        gt_affs: '/volumes/gt_affs',
        pred_affs: '/volumes/pred_affs',
    }

    optimizer_args = None
    if kwargs['auto_mixed_precision']:
        optimizer_args = (kwargs['optimizer'], {
            'args': kwargs['args'],
            'kwargs': kwargs['kwargs']
        })
    augmentation = kwargs['augmentation']
    pipeline = (
        tuple(
            sourceNode(
                fls[t] + "." + kwargs['input_format'],
                datasets=datasets,
                # array_specs=array_specs
            )
            + gp.Pad(raw, None)
            + gp.Pad(gt_labels, None)

            # chose a random location for each requested batch
            + gp.RandomLocation()

            for t in range(ln)
        ) +

        # chose a random source (i.e., sample) from the above
        gp.RandomProvider() +

        # elastically deform the batch
        gp.ElasticAugment(
            augmentation['elastic']['control_point_spacing'],
            augmentation['elastic']['jitter_sigma'],
            [augmentation['elastic']['rotation_min']*np.pi/180.0,
             augmentation['elastic']['rotation_max']*np.pi/180.0],
            subsample=4) +

        # apply transpose and mirror augmentations
        gp.SimpleAugment(mirror_only=augmentation['simple'].get("mirror"),
                         transpose_only=augmentation['simple'].get("transpose")) +

        # scale and shift the intensity of the raw array
        gp.IntensityAugment(
            raw,
            scale_min=augmentation['intensity']['scale'][0],
            scale_max=augmentation['intensity']['scale'][1],
            shift_min=augmentation['intensity']['shift'][0],
            shift_max=augmentation['intensity']['shift'][1],
            z_section_wise=False) +

        # grow a boundary between labels
        gp.GrowBoundary(
            gt_labels,
            steps=1,
            only_xy=False) +

        # convert labels into affinities between voxels
        gp.AddAffinities(
            neighborhood,
            gt_labels,
            gt_affs) +

        # create a weight array that balances positive and negative samples in
        # the affinity array
        # gp.BalanceLabels(
        #     gt_affs,
        #     loss_weights_affs) +

        # pre-cache batches from the point upstream
        gp.PreCache(
            cache_size=kwargs['cache_size'],
            num_workers=kwargs['num_workers']) +

        # pre-fetch batches from the point upstream
        (gp.tensorflow.TFData() \
         if kwargs.get('use_tf_data') else NoOp()) +

        # perform one training iteration for each passing batch (here we use
        # the tensor names earlier stored in train_net.config)
        gp.tensorflow.Train(
            os.path.join(kwargs['output_folder'], kwargs['name']),
            optimizer=net_names['optimizer'],
            summary=net_names['summaries'],
            log_dir=kwargs['output_folder'],
            loss=net_names['loss'],
            inputs=inputs,
            outputs=outputs,
            array_specs=input_specs,
            gradients={
                net_names['pred_affs']: pred_affs_gradients,
            },
            auto_mixed_precision=kwargs['auto_mixed_precision'],
            optimizer_args=optimizer_args,
            use_tf_data=kwargs['use_tf_data'],
            save_every=kwargs['checkpoints'],
            snapshot_every=kwargs['snapshots']) +

        # save the passing batch as an HDF5 file for inspection
        gp.Snapshot(
            snapshot,
            output_dir=os.path.join(kwargs['output_folder'], 'snapshots'),
            output_filename='batch_{iteration}.hdf',
            every=kwargs['snapshots'],
            additional_request=snapshot_request,
            compression_type='gzip') +

        # show a summary of time spend in each node every 10 iterations
        gp.PrintProfilingStats(every=kwargs['profiling'])
    )

    #########
    # TRAIN #
    #########
    print("Starting training...")
    try:
        with gp.build(pipeline):
            print(pipeline)
            for i in range(trained_until, kwargs['max_iteration']):
                start = time.time()
                pipeline.request_batch(request)
                time_of_iteration = time.time() - start

                logger.info("Batch: iteration=%d, time=%f", i,
                            time_of_iteration)
            # exit()
    except KeyboardInterrupt:
        sys.exit()
    print("Training finished")
Пример #14
0
def train_until(**kwargs):
    if tf.train.latest_checkpoint(kwargs['output_folder']):
        trained_until = int(
            tf.train.latest_checkpoint(kwargs['output_folder']).split('_')[-1])
    else:
        trained_until = 0
    if trained_until >= kwargs['max_iteration']:
        return

    anchor = gp.ArrayKey('ANCHOR')
    raw = gp.ArrayKey('RAW')
    raw_cropped = gp.ArrayKey('RAW_CROPPED')
    gt_labels = gp.ArrayKey('GT_LABELS')
    gt_affs = gp.ArrayKey('GT_AFFS')
    gt_fgbg = gp.ArrayKey('GT_FGBG')

    # loss_weights_affs = gp.ArrayKey('LOSS_WEIGHTS_AFFS')
    loss_weights_fgbg = gp.ArrayKey('LOSS_WEIGHTS_FGBG')

    pred_affs = gp.ArrayKey('PRED_AFFS')
    pred_fgbg = gp.ArrayKey('PRED_FGBG')

    pred_affs_gradients = gp.ArrayKey('PRED_AFFS_GRADIENTS')
    pred_fgbg_gradients = gp.ArrayKey('PRED_FGBG_GRADIENTS')

    with open(
            os.path.join(kwargs['output_folder'],
                         kwargs['name'] + '_config.json'), 'r') as f:
        net_config = json.load(f)
    with open(
            os.path.join(kwargs['output_folder'],
                         kwargs['name'] + '_names.json'), 'r') as f:
        net_names = json.load(f)

    voxel_size = gp.Coordinate(kwargs['voxel_size'])
    input_shape_world = gp.Coordinate(net_config['input_shape']) * voxel_size
    output_shape_world = gp.Coordinate(net_config['output_shape']) * voxel_size

    # formulate the request for what a batch should (at least) contain
    request = gp.BatchRequest()
    request.add(raw, input_shape_world)
    request.add(raw_cropped, output_shape_world)
    request.add(gt_labels, output_shape_world)
    request.add(gt_fgbg, output_shape_world)
    request.add(anchor, output_shape_world)
    request.add(gt_affs, output_shape_world)
    # request.add(loss_weights_affs, output_shape_world)
    request.add(loss_weights_fgbg, output_shape_world)

    # when we make a snapshot for inspection (see below), we also want to
    # request the predicted affinities and gradients of the loss wrt the
    # affinities
    snapshot_request = gp.BatchRequest()
    snapshot_request.add(raw_cropped, output_shape_world)
    snapshot_request.add(pred_affs, output_shape_world)
    # snapshot_request.add(pred_affs_gradients, output_shape_world)
    snapshot_request.add(gt_fgbg, output_shape_world)
    snapshot_request.add(pred_fgbg, output_shape_world)
    # snapshot_request.add(pred_fgbg_gradients, output_shape_world)

    if kwargs['input_format'] != "hdf" and kwargs['input_format'] != "zarr":
        raise NotImplementedError("train node for %s not implemented yet",
                                  kwargs['input_format'])

    fls = []
    shapes = []
    for f in kwargs['data_files']:
        fls.append(os.path.splitext(f)[0])
        if kwargs['input_format'] == "hdf":
            vol = h5py.File(f, 'r')['volumes/raw']
        elif kwargs['input_format'] == "zarr":
            vol = zarr.open(f, 'r')['volumes/raw']
        print(f, vol.shape, vol.dtype)
        shapes.append(vol.shape)
        if vol.dtype != np.float32:
            print("please convert to float32")
    ln = len(fls)
    print("first 5 files: ", fls[0:4])

    # padR = 46
    # padGT = 32

    if kwargs['input_format'] == "hdf":
        sourceNode = gp.Hdf5Source
    elif kwargs['input_format'] == "zarr":
        sourceNode = gp.ZarrSource

    augmentation = kwargs['augmentation']
    pipeline = (
        tuple(
            sourceNode(
                fls[t] + "." + kwargs['input_format'],
                datasets={
                    raw: 'volumes/raw',
                    gt_labels: 'volumes/gt_labels',
                    gt_fgbg: 'volumes/gt_fgbg',
                    anchor: 'volumes/gt_fgbg',
                },
                array_specs={
                    raw: gp.ArraySpec(interpolatable=True),
                    gt_labels: gp.ArraySpec(interpolatable=False),
                    gt_fgbg: gp.ArraySpec(interpolatable=False),
                    anchor: gp.ArraySpec(interpolatable=False)
                }
            )
            + gp.Pad(raw, None)
            + gp.Pad(gt_labels, None)
            + gp.Pad(gt_fgbg, None)

            # chose a random location for each requested batch
            + gp.RandomLocation()

            for t in range(ln)
        ) +

        # chose a random source (i.e., sample) from the above
        gp.RandomProvider() +

        # elastically deform the batch
        (gp.ElasticAugment(
            augmentation['elastic']['control_point_spacing'],
            augmentation['elastic']['jitter_sigma'],
            [augmentation['elastic']['rotation_min']*np.pi/180.0,
             augmentation['elastic']['rotation_max']*np.pi/180.0],
            subsample=augmentation['elastic'].get('subsample', 1)) \
        if augmentation.get('elastic') is not None else NoOp())  +

        # apply transpose and mirror augmentations
        gp.SimpleAugment(mirror_only=augmentation['simple'].get("mirror"),
                         transpose_only=augmentation['simple'].get("transpose")) +

        # # scale and shift the intensity of the raw array
        gp.IntensityAugment(
            raw,
            scale_min=augmentation['intensity']['scale'][0],
            scale_max=augmentation['intensity']['scale'][1],
            shift_min=augmentation['intensity']['shift'][0],
            shift_max=augmentation['intensity']['shift'][1],
            z_section_wise=False) +

        # grow a boundary between labels
        gp.GrowBoundary(
            gt_labels,
            steps=1,
            only_xy=False) +

        # convert labels into affinities between voxels
        gp.AddAffinities(
            [[-1, 0, 0], [0, -1, 0], [0, 0, -1]],
            gt_labels,
            gt_affs) +

        # create a weight array that balances positive and negative samples in
        # the affinity array
        # gp.BalanceLabels(
        #     gt_affs,
        #     loss_weights_affs) +

        gp.BalanceLabels(
            gt_fgbg,
            loss_weights_fgbg) +

        # pre-cache batches from the point upstream
        gp.PreCache(
            cache_size=kwargs['cache_size'],
            num_workers=kwargs['num_workers']) +

        # perform one training iteration for each passing batch (here we use
        # the tensor names earlier stored in train_net.config)
        gp.tensorflow.Train(
            os.path.join(kwargs['output_folder'], kwargs['name']),
            optimizer=net_names['optimizer'],
            summary=net_names['summaries'],
            log_dir=kwargs['output_folder'],
            loss=net_names['loss'],
            inputs={
                net_names['raw']: raw,
                net_names['gt_affs']: gt_affs,
                net_names['gt_fgbg']: gt_fgbg,
                net_names['anchor']: anchor,
                net_names['gt_labels']: gt_labels,
                # net_names['loss_weights_affs']: loss_weights_affs,
                net_names['loss_weights_fgbg']: loss_weights_fgbg
            },
            outputs={
                net_names['pred_affs']: pred_affs,
                net_names['pred_fgbg']: pred_fgbg,
                net_names['raw_cropped']: raw_cropped,
            },
            gradients={
                net_names['pred_affs']: pred_affs_gradients,
                net_names['pred_fgbg']: pred_fgbg_gradients,
            },
            malis=True,
            save_every=kwargs['checkpoints']) +

        # save the passing batch as an HDF5 file for inspection
        gp.Snapshot(
            {
                raw: '/volumes/raw',
                raw_cropped: 'volumes/raw_cropped',
                gt_labels: '/volumes/gt_labels',
                gt_affs: '/volumes/gt_affs',
                gt_fgbg: '/volumes/gt_fgbg',
                pred_affs: '/volumes/pred_affs',
                pred_affs_gradients: '/volumes/pred_affs_gradients',
                pred_fgbg: '/volumes/pred_fgbg',
                pred_fgbg_gradients: '/volumes/pred_fgbg_gradients',
            },
            output_dir=os.path.join(kwargs['output_folder'], 'snapshots'),
            output_filename='batch_{iteration}.hdf',
            every=kwargs['snapshots'],
            additional_request=snapshot_request,
            compression_type='gzip') +

        # show a summary of time spend in each node every 10 iterations
        gp.PrintProfilingStats(every=kwargs['profiling'])
    )

    #########
    # TRAIN #
    #########
    print("Starting training...")
    with gp.build(pipeline):
        print(pipeline)
        for i in range(trained_until, kwargs['max_iteration']):
            # print("request", request)
            start = time.time()
            pipeline.request_batch(request)
            time_of_iteration = time.time() - start

            logger.info("Batch: iteration=%d, time=%f", i, time_of_iteration)
            # exit()
    print("Training finished")
Пример #15
0
def train_until(max_iteration):

    # get the latest checkpoint
    if tf.train.latest_checkpoint("."):
        trained_until = int(tf.train.latest_checkpoint(".").split("_")[-1])
    else:
        trained_until = 0
        if trained_until >= max_iteration:
            return

    # array keys for data sources
    raw = gp.ArrayKey("RAW")
    swcs = gp.PointsKey("SWCS")

    voxel_size = gp.Coordinate((10, 3, 3))
    input_size = gp.Coordinate(net_config["input_shape"]) * voxel_size * 2

    # add request
    request = gp.BatchRequest()
    request.add(raw, input_size)
    request.add(swcs, input_size)

    data_sources = tuple((
        gp.N5Source(
            filename=str((
                filename /
                "consensus-neurons-with-machine-centerpoints-labelled-as-swcs-carved.n5"
            ).absolute()),
            datasets={raw: "volume"},
            array_specs={
                raw:
                gp.ArraySpec(interpolatable=True,
                             voxel_size=voxel_size,
                             dtype=np.uint16)
            },
        ),
        MouselightSwcFileSource(
            filename=str((
                filename /
                "consensus-neurons-with-machine-centerpoints-labelled-as-swcs/G-002.swc"
            ).absolute()),
            points=(swcs, ),
            scale=voxel_size,
            transpose=(2, 1, 0),
            transform_file=str((filename / "transform.txt").absolute()),
        ),
    ) + gp.MergeProvider() + gp.RandomLocation(ensure_nonempty=swcs,
                                               ensure_centered=True)
                         for filename in Path(sample_dir).iterdir()
                         if "2018-08-01" in filename.name)

    pipeline = data_sources + gp.RandomProvider()

    with gp.build(pipeline):

        print("Starting training...")
        for i in range(max_iteration - trained_until):
            batch = pipeline.request_batch(request)
            vis_points_with_array(batch[raw].data,
                                  points_to_graph(batch[swcs].data),
                                  np.array(voxel_size))