Пример #1
0
    def artefactFilteringSelection(self):
        global x_ray_image;

        value = self.artefact_filtering_var.get();
        if value is 0:
            gvxr.disableArtefactFiltering();
        elif value is 1:
            gvxr.enableArtefactFilteringOnCPU();
        elif value is 2:
            gvxr.enableArtefactFilteringOnGPU();

        x_ray_image = gvxr.computeXRayImage();
        gvxr.displayScene()
        self.xray_vis.draw(x_ray_image);
Пример #2
0
def setXRayEnvironment():

    gvxr.createWindow()
    gvxr.setWindowSize(512, 512)

    #gvxr.usePointSource();
    gvxr.setMonoChromatic(80, "keV", 1000)

    gvxr.setDetectorUpVector(0, 0, -1)
    gvxr.setDetectorNumberOfPixels(768, 1024)
    gvxr.setDetectorPixelSize(0.5, 0.5, "mm")
    # 5 dpi

    setXRayParameters(10.0, 100.0)

    gvxr.loadSceneGraph("./hand.dae", "m")
    node_label_set = []
    node_label_set.append('root')

    # The list is not empty
    while (len(node_label_set)):

        # Get the last node
        last_node = node_label_set[-1]

        # Initialise the material properties
        # print("Set ", label, "'s Hounsfield unit");
        # gvxr.setHU(label, 1000)
        Z = gvxr.getElementAtomicNumber("H")
        gvxr.setElement(last_node, gvxr.getElementName(Z))

        # Change the node colour to a random colour
        gvxr.setColour(last_node, random.uniform(0, 1), random.uniform(0, 1),
                       random.uniform(0, 1), 1.0)

        # Remove it from the list
        node_label_set.pop()

        # Add its Children
        for i in range(gvxr.getNumberOfChildren(last_node)):
            node_label_set.append(gvxr.getChildLabel(last_node, i))

    gvxr.moveToCentre('root')
    gvxr.disableArtefactFiltering()
    gvxr.rotateNode('root', -90, 1, 0, 0)
def initEnvironment():
    global g_reference_sinogram
    global g_reference_CT

    global g_normalised_reference_sinogram
    global g_normalised_reference_CT

    global reference_sinogram_entropy
    global reference_CT_entropy

    g_reference_CT = cropCenter(np.loadtxt("W_ML_20keV.tomo-original.txt"),
                                detector_width_in_pixels,
                                detector_width_in_pixels)

    g_reference_sinogram = radon(g_reference_CT, theta=theta, circle=True).T

    g_normalised_reference_sinogram = IM.normalise(g_reference_sinogram)

    g_normalised_reference_CT = IM.normalise(g_reference_CT)

    reference_CT_entropy = IM.getEntropy(g_reference_CT)
    reference_sinogram_entropy = IM.getEntropy(g_reference_sinogram)

    np.savetxt("normalised_sinogram_ref.txt", g_normalised_reference_sinogram)
    np.savetxt("normalised_CT_ref.txt", g_normalised_reference_CT)

    #np.savetxt("sinogram_ref.txt", g_reference_sinogram);
    #np.savetxt("CT_ref.txt",       g_reference_CT);

    scipy.misc.toimage(g_normalised_reference_sinogram).save(
        'sinogram_ref.jpg')
    scipy.misc.toimage(g_normalised_reference_CT).save('CT_ref.jpg')

    # Create an OpenGL context
    print("Create an OpenGL context")
    gvxr.createOpenGLContext()
    gvxr.setWindowSize(512, 512)

    # Create the X-ray simulator
    initXRaySimulator()
    gvxr.disableArtefactFiltering()
Пример #4
0
gvxr.setMonoChromatic(0.08, "MeV", 1000);

# Set up the detector
print("Set up the detector");
gvxr.setDetectorUpVector(0, 0, -1);
gvxr.setDetectorNumberOfPixels(1024, 1536);
gvxr.setDetectorPixelSize(0.5, 0.5, "mm");

setXRayParameters(ground_truth_SOD, ground_truth_SDD);

# Load the data
print("Load the data");

gvxr.loadSceneGraph("/home/ti/Documents/gvxr-python3-gui/hand.dae", "m");
gvxr.moveToCentre('root');
gvxr.disableArtefactFiltering();

# Compute groud truth x-ray image
ground_truth_image = poserior_anterior(ground_truth_angles);
plt.imsave("ground-truth.png", ground_truth_image);
# Compute optimisation
image = random_search();
plt.imsave("prediction.png", image);

plt.subplot(1, 2, 1);
plt.imshow(ground_truth_image);

plt.subplot(1, 2, 2);
plt.imshow(image);
plt.show();
Пример #5
0
def createTarget():
    global target

    target_SOD = 100
    target_SDD = 140
    target_angles_pa = [
        0, 20, 0, -10, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    ]

    target = []
    target.append(target_SOD)
    target.append(target_SDD)
    for i in range(len(target_angles_pa)):
        target.append(target_angles_pa[i])

    gvxr.createWindow()
    gvxr.setWindowSize(512, 512)

    #gvxr.usePointSource();
    gvxr.setMonoChromatic(80, "keV", 1000)

    gvxr.setDetectorUpVector(0, 0, -1)
    gvxr.setDetectorNumberOfPixels(1536, 1536)
    gvxr.setDetectorPixelSize(0.5, 0.5, "mm")
    # 5 dpi
    setXRayParameters(target_SOD, target_SDD)

    gvxr.loadSceneGraph("./hand.dae", "m")
    node_label_set = []
    node_label_set.append('root')

    # The list is not empty
    while (len(node_label_set)):

        # Get the last node
        last_node = node_label_set[-1]

        # Initialise the material properties
        # print("Set ", label, "'s Hounsfield unit");
        # gvxr.setHU(label, 1000)
        Z = gvxr.getElementAtomicNumber("H")
        gvxr.setElement(last_node, gvxr.getElementName(Z))

        # Change the node colour to a random colour
        gvxr.setColour(last_node, random.uniform(0, 1), random.uniform(0, 1),
                       random.uniform(0, 1), 1.0)

        # Remove it from the list
        node_label_set.pop()

        # Add its Children
        for i in range(gvxr.getNumberOfChildren(last_node)):
            node_label_set.append(gvxr.getChildLabel(last_node, i))

    gvxr.moveToCentre('root')
    gvxr.disableArtefactFiltering()

    target_image = bone_rotation(target_angles_pa)
    plt.imsave("./posterior-anterior/RMSE/target.png",
               target_image,
               cmap='Greys_r')

    return target_image, target
Пример #6
0
def main(argv):
    global x_ray_image

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-input",
        type=str,
        help=
        "Input file (see http://assimp.sourceforge.net/main_features_formats.html for a list of supported file formats)"
    )
    parser.add_argument(
        "-unit",
        type=str,
        help="Unit of length corresponding to the input",
        choices=["um", "mm", "cm", "dm", "m", "dam", "hm", "km"])

    args = parser.parse_args()
    if args.input and args.unit:
        # Create an OpenGL context
        print("Create an OpenGL context")
        gvxr.createWindow()
        gvxr.setWindowSize(512, 512)

        # Set up the beam
        print("Set up the beam")
        gvxr.setSourcePosition(100.0, 0.0, 0.0, "cm")
        gvxr.usePointSource()
        #gvxr.useParallelBeam();
        gvxr.setMonoChromatic(0.08, "MeV", 1)

        # Set up the detector
        print("Set up the detector")
        gvxr.setDetectorPosition(-40.0, 0.0, 0.0, "cm")
        gvxr.setDetectorUpVector(0, 0, -1)
        gvxr.setDetectorNumberOfPixels(1024, 1024)
        gvxr.setDetectorPixelSize(0.5, 0.5, "mm")

        # Load the data
        print("Load the data")

        gvxr.loadSceneGraph(args.input, args.unit)

        gvxr.disableArtefactFiltering()

        #gvxr.loadMeshFile("chest", "./HVPTest/chest2.obj", "mm");
        #gvxr.invertNormalVectors("armR");
        #gvxr.invertNormalVectors("chest");

        node_label_set = []
        node_label_set.append('root')

        # The list is not empty
        while (len(node_label_set)):

            # Get the last node
            last_node = node_label_set[-1]

            # Initialise the material properties
            #print("Set ", label, "'s Hounsfield unit");
            #gvxr.setHU(label, 1000)
            Z = gvxr.getElementAtomicNumber("H")
            gvxr.setElement(last_node, gvxr.getElementName(Z))

            # Change the node colour to a random colour
            gvxr.setColour(last_node, random.uniform(0, 1),
                           random.uniform(0, 1), random.uniform(0, 1), 1.0)

            # Remove it from the list
            node_label_set.pop()

            # Add its Children
            for i in range(gvxr.getNumberOfChildren(last_node)):
                node_label_set.append(gvxr.getChildLabel(last_node, i))
            '''
        for label in gvxr.getMeshLabelSet():
            print("Move ", label, " to the centre");
            #gvxr.moveToCentre(label);

            #print("Move the mesh to the center");
            #gvxr.moveToCenter(label);

            #gvxr.invertNormalVectors(label);
        '''
        #gvxr.moveToCentre();
        gvxr.moveToCentre('root')

        # Compute an X-ray image
        #print("Compute an X-ray image");
        #gvxr.disableArtefactFiltering();
        #gvxr.enableArtefactFilteringOnGPU();
        # Not working anymore gvxr.enableArtefactFilteringOnGPU();
        # Not working anymore gvxr.enableArtefactFilteringOnCPU();
        x_ray_image = np.array(gvxr.computeXRayImage())
        '''x_ray_image -= 0.0799;
        x_ray_image /= 0.08 - 0.0799;
        plt.ioff();
        plt.imshow(x_ray_image, cmap="gray");
        plt.show()
        '''
        #gvxr.setShiftFilter(-0.0786232874);
        #gvxr.setScaleFilter(726.368958);

        gvxr.displayScene()

        app = App.App(0.08)
def computeSinogram():

    gvxr.disableArtefactFiltering()
    gvxr.enableArtefactFilteringOnGPU()

    # Compute an X-ray image
    #print("Compute sinogram");

    sinogram = np.zeros((number_of_projections, detector_width_in_pixels),
                        dtype=np.float)

    sinogram = np.array(
        gvxr.computeSinogram(0, 1, 0, 'mm', number_of_projections,
                             -angular_step))

    #gvxr.saveLastSinogram();
    #gvxr.saveLastLBuffer('saveLastLBuffer.mhd');
    #gvxr.saveLastCumulatedLBuffer('saveLastCumulatedLBuffer.mhd');

    return sinogram

    for angle_id in range(0, number_of_projections):
        gvxr.resetSceneTransformation()
        gvxr.rotateScene(-angular_step * angle_id, 0, 1, 0)

        #gvxr.displayScene();
        #print (str(angle_id), ":\t", str(angular_step * angle_id), " degrees");
        # Rotate the scene

        # Compute the X-ray projection and save the numpy image
        np_image = np.array(gvxr.computeXRayImage())

        # Display the 3D scene (no event loop)
        #gvxr.displayScene();

        # Append the sinogram
        sinogram[angle_id] = np_image[math.floor(detector_height_in_pixels /
                                                 2), :]

    total_energy = 0.0
    for i, j in energy_spectrum_in_keV:
        total_energy += i * j * gvxr.getUnitOfEnergy('keV')

    blur_the_sinogram = False
    if blur_the_sinogram:
        blurred_sinogram = np.zeros(sinogram.shape)

        t = np.arange(-20., 21., 1.)
        kernel = lsf(t * 41) / lsf(0)
        kernel /= kernel.sum()
        #plt.plot(t,kernel);
        #plt.show();

        for i in range(sinogram.shape[0]):
            blurred_sinogram[i] = np.convolve(sinogram[i], kernel, mode='same')

        blurred_sinogram = total_energy / blurred_sinogram
        blurred_sinogram = np.log(blurred_sinogram)
        blurred_sinogram /= (
            pixel_size_in_micrometer *
            gvxr.getUnitOfLength("um")) / gvxr.getUnitOfLength("cm")

        #np.savetxt("blurred_sinogram_gvxr.txt", blurred_sinogram);

        return blurred_sinogram

    # Convert in keV
    sinogram = total_energy / sinogram
    sinogram = np.log(sinogram)
    sinogram /= (pixel_size_in_micrometer *
                 gvxr.getUnitOfLength("um")) / gvxr.getUnitOfLength("cm")

    #np.savetxt("sinogram_gvxr.txt", sinogram);

    gvxr.saveLastLBuffer('saveLastLBuffer.mhd')
    gvxr.saveLastCumulatedLBuffer('saveLastCumulatedLBuffer.mhd')

    np_image = np.array(gvxr.computeLBuffer('Matrix'))
    np.savetxt("l_buffer.txt", np_image)

    return sinogram