def __init__(self,
                 env_fns,
                 observation_space=None,
                 action_space=None,
                 shared_memory=True,
                 copy=True,
                 context=None):
        try:
            ctx = mp.get_context(context)
        except AttributeError:
            logger.warn('Context switching for `multiprocessing` is not '
                        'available in Python 2. Using the default context.')
            ctx = mp
        self.env_fns = env_fns
        self.shared_memory = shared_memory
        self.copy = copy

        if (observation_space is None) or (action_space is None):
            dummy_env = env_fns[0]()
            observation_space = observation_space or dummy_env.observation_space
            action_space = action_space or dummy_env.action_space
            dummy_env.close()
            del dummy_env
        super(AsyncVectorEnv,
              self).__init__(num_envs=len(env_fns),
                             observation_space=observation_space,
                             action_space=action_space)

        if self.shared_memory:
            _obs_buffer = create_shared_memory(self.single_observation_space,
                                               n=self.num_envs)
            self.observations = read_from_shared_memory(
                _obs_buffer, self.single_observation_space, n=self.num_envs)
        else:
            _obs_buffer = None
            self.observations = create_empty_array(
                self.single_observation_space, n=self.num_envs, fn=np.zeros)

        self.parent_pipes, self.processes = [], []
        self.error_queue = ctx.Queue()
        target = _worker_shared_memory if self.shared_memory else _worker
        with clear_mpi_env_vars():
            for idx, env_fn in enumerate(self.env_fns):
                parent_pipe, child_pipe = ctx.Pipe()
                process = ctx.Process(
                    target=target,
                    name='Worker<{0}>-{1}'.format(type(self).__name__, idx),
                    args=(idx, CloudpickleWrapper(env_fn), child_pipe,
                          parent_pipe, _obs_buffer, self.error_queue))

                self.parent_pipes.append(parent_pipe)
                self.processes.append(process)

                process.daemon = True
                process.start()
                child_pipe.close()

        self._state = AsyncState.DEFAULT
        self._check_observation_spaces()
Пример #2
0
    def __init__(self, env_fns, observation_space=None, action_space=None,
                 shared_memory=True, copy=True, context=None, daemon=True, worker=None):
        ctx = mp.get_context(context)
        self.env_fns = env_fns
        self.shared_memory = shared_memory
        self.copy = copy

        if (observation_space is None) or (action_space is None):
            dummy_env = env_fns[0]()
            observation_space = observation_space or dummy_env.observation_space
            action_space = action_space or dummy_env.action_space
            dummy_env.close()
            del dummy_env
        super(AsyncVectorEnv, self).__init__(num_envs=len(env_fns),
            observation_space=observation_space, action_space=action_space)

        if self.shared_memory:
            try:
                _obs_buffer = create_shared_memory(self.single_observation_space,
                    n=self.num_envs, ctx=ctx)
                self.observations = read_from_shared_memory(_obs_buffer,
                    self.single_observation_space, n=self.num_envs)
            except CustomSpaceError:
                raise ValueError('Using `shared_memory=True` in `AsyncVectorEnv` '
                    'is incompatible with non-standard Gym observation spaces '
                    '(i.e. custom spaces inheriting from `gym.Space`), and is '
                    'only compatible with default Gym spaces (e.g. `Box`, '
                    '`Tuple`, `Dict`) for batching. Set `shared_memory=False` '
                    'if you use custom observation spaces.')
        else:
            _obs_buffer = None
            self.observations = create_empty_array(
            	self.single_observation_space, n=self.num_envs, fn=np.zeros)

        self.parent_pipes, self.processes = [], []
        self.error_queue = ctx.Queue()
        target = _worker_shared_memory if self.shared_memory else _worker
        target = worker or target
        with clear_mpi_env_vars():
            for idx, env_fn in enumerate(self.env_fns):
                parent_pipe, child_pipe = ctx.Pipe()
                process = ctx.Process(target=target,
                    name='Worker<{0}>-{1}'.format(type(self).__name__, idx),
                    args=(idx, CloudpickleWrapper(env_fn), child_pipe,
                    parent_pipe, _obs_buffer, self.error_queue))

                self.parent_pipes.append(parent_pipe)
                self.processes.append(process)

                process.daemon = daemon
                process.start()
                child_pipe.close()

        self._state = AsyncState.DEFAULT
        self._check_observation_spaces()
Пример #3
0
    def __init__(
        self,
        env_fns: Sequence[callable],
        observation_space: Optional[gym.Space] = None,
        action_space: Optional[gym.Space] = None,
        shared_memory: bool = True,
        copy: bool = True,
        context: Optional[str] = None,
        daemon: bool = True,
        worker: Optional[callable] = None,
    ):
        """Vectorized environment that runs multiple environments in parallel.

        Args:
            env_fns: Functions that create the environments.
            observation_space: Observation space of a single environment. If ``None``, then the observation space of the first environment is taken.
            action_space: Action space of a single environment. If ``None``, then the action space of the first environment is taken.
            shared_memory: If ``True``, then the observations from the worker processes are communicated back through shared variables. This can improve the efficiency if the observations are large (e.g. images).
            copy: If ``True``, then the :meth:`~AsyncVectorEnv.reset` and :meth:`~AsyncVectorEnv.step` methods return a copy of the observations.
            context: Context for `multiprocessing`_. If ``None``, then the default context is used.
            daemon: If ``True``, then subprocesses have ``daemon`` flag turned on; that is, they will quit if the head process quits. However, ``daemon=True`` prevents subprocesses to spawn children, so for some environments you may want to have it set to ``False``.
            worker: If set, then use that worker in a subprocess instead of a default one. Can be useful to override some inner vector env logic, for instance, how resets on done are handled.

        Warnings: worker is an advanced mode option. It provides a high degree of flexibility and a high chance to shoot yourself in the foot; thus, if you are writing your own worker, it is recommended to start from the code for ``_worker`` (or ``_worker_shared_memory``) method, and add changes.

        Raises:
            RuntimeError: If the observation space of some sub-environment does not match observation_space (or, by default, the observation space of the first sub-environment).
            ValueError: If observation_space is a custom space (i.e. not a default space in Gym, such as gym.spaces.Box, gym.spaces.Discrete, or gym.spaces.Dict) and shared_memory is True.
        """
        ctx = mp.get_context(context)
        self.env_fns = env_fns
        self.shared_memory = shared_memory
        self.copy = copy
        dummy_env = env_fns[0]()
        self.metadata = dummy_env.metadata

        if (observation_space is None) or (action_space is None):
            observation_space = observation_space or dummy_env.observation_space
            action_space = action_space or dummy_env.action_space
        dummy_env.close()
        del dummy_env
        super().__init__(
            num_envs=len(env_fns),
            observation_space=observation_space,
            action_space=action_space,
        )

        if self.shared_memory:
            try:
                _obs_buffer = create_shared_memory(
                    self.single_observation_space, n=self.num_envs, ctx=ctx)
                self.observations = read_from_shared_memory(
                    self.single_observation_space,
                    _obs_buffer,
                    n=self.num_envs)
            except CustomSpaceError:
                raise ValueError(
                    "Using `shared_memory=True` in `AsyncVectorEnv` "
                    "is incompatible with non-standard Gym observation spaces "
                    "(i.e. custom spaces inheriting from `gym.Space`), and is "
                    "only compatible with default Gym spaces (e.g. `Box`, "
                    "`Tuple`, `Dict`) for batching. Set `shared_memory=False` "
                    "if you use custom observation spaces.")
        else:
            _obs_buffer = None
            self.observations = create_empty_array(
                self.single_observation_space, n=self.num_envs, fn=np.zeros)

        self.parent_pipes, self.processes = [], []
        self.error_queue = ctx.Queue()
        target = _worker_shared_memory if self.shared_memory else _worker
        target = worker or target
        with clear_mpi_env_vars():
            for idx, env_fn in enumerate(self.env_fns):
                parent_pipe, child_pipe = ctx.Pipe()
                process = ctx.Process(
                    target=target,
                    name=f"Worker<{type(self).__name__}>-{idx}",
                    args=(
                        idx,
                        CloudpickleWrapper(env_fn),
                        child_pipe,
                        parent_pipe,
                        _obs_buffer,
                        self.error_queue,
                    ),
                )

                self.parent_pipes.append(parent_pipe)
                self.processes.append(process)

                process.daemon = daemon
                process.start()
                child_pipe.close()

        self._state = AsyncState.DEFAULT
        self._check_spaces()