Пример #1
0
    def step(self, action, dt):
        """ 
        
        The desired change in heading divided by dt is the desired turning rate.
        Clip this to remain within plus/minus max_turn_rate.
        Then, propagate using the UnicycleDynamics model instead.
        Should update this to call UnicycleDynamics's step instead of re-writing.

        Args:
            action (list): [delta heading angle, speed] command for this agent
            dt (float): time in seconds to execute :code:`action`
        
        """
        selected_speed = action[0]
        turning_rate = np.clip(action[1]/dt, -self.max_turn_rate, self.max_turn_rate)
        selected_heading = wrap(turning_rate*dt + self.agent.heading_global_frame)

        dx = selected_speed * np.cos(selected_heading) * dt
        dy = selected_speed * np.sin(selected_heading) * dt
        self.agent.pos_global_frame += np.array([dx, dy])

        self.agent.vel_global_frame[0] = selected_speed * np.cos(selected_heading)
        self.agent.vel_global_frame[1] = selected_speed * np.sin(selected_heading)
        self.agent.speed_global_frame = selected_speed
        self.agent.delta_heading_global_frame = wrap(selected_heading -
                                               self.agent.heading_global_frame)
        self.agent.heading_global_frame = selected_heading
    def step(self, action, dt):
        selected_speed = action[0]
        turning_rate = np.clip(action[1] / dt, -self.max_turn_rate,
                               self.max_turn_rate)

        linear_acc = np.clip(self.kp * (selected_speed - self.current_speed),
                             -self.max_linear_acc, self.max_linear_acc)
        turn_acc = np.clip(
            self.kp * (turning_rate - self.current_turning_rate),
            -self.max_turn_acc, self.max_turn_acc)

        self.current_speed += linear_acc * dt
        self.current_speed = np.clip(self.current_speed, -self.max_speed,
                                     self.max_speed)
        self.current_turning_rate += turn_acc * dt

        selected_heading = wrap(self.current_turning_rate * dt +
                                self.agent.heading_global_frame)

        dx = self.current_speed * np.cos(selected_heading) * dt
        dy = self.current_speed * np.sin(selected_heading) * dt
        self.agent.pos_global_frame += np.array([dx, dy])

        self.agent.vel_global_frame[0] = self.current_speed * np.cos(
            selected_heading)
        self.agent.vel_global_frame[1] = self.current_speed * np.sin(
            selected_heading)
        self.agent.speed_global_frame = self.current_speed
        self.agent.delta_heading_global_frame = wrap(
            selected_heading - self.agent.heading_global_frame)
        self.agent.heading_global_frame = selected_heading
Пример #3
0
    def set_state(self, px, py, vx=None, vy=None, heading=None):
        if vx is None or vy is None:
            if self.step_num == 0:
                # On first timestep, just set to zero
                self.vel_global_frame = np.array([0, 0])
            else:
                # Interpolate velocity from last pos
                self.vel_global_frame = (np.array(
                    [px, py]) - self.pos_global_frame) / self.dt_nominal
        else:
            self.vel_global_frame = np.array([vx, vy])

        if heading is None:
            # Estimate heading to be the direction of the velocity vector
            heading = np.arctan2(self.vel_global_frame[1],
                                 self.vel_global_frame[0])
            self.delta_heading_global_frame = wrap(heading -
                                                   self.heading_global_frame)
        else:
            self.delta_heading_global_frame = wrap(heading -
                                                   self.heading_global_frame)

        self.pos_global_frame = np.array([px, py])
        self.speed_global_frame = np.linalg.norm(self.vel_global_frame)
        self.heading_global_frame = heading
Пример #4
0
    def step(self, action, dt):
        selected_speed = action[0]
        selected_heading = wrap(action[1] * dt +
                                self.agent.heading_global_frame)

        dx = selected_speed * np.cos(selected_heading) * dt
        dy = selected_speed * np.sin(selected_heading) * dt
        self.agent.pos_global_frame += np.array([dx, dy])

        self.agent.vel_global_frame[0] = selected_speed * np.cos(
            selected_heading)
        self.agent.vel_global_frame[1] = selected_speed * np.sin(
            selected_heading)
        self.agent.speed_global_frame = selected_speed
        self.agent.delta_heading_global_frame = wrap(
            selected_heading - self.agent.heading_global_frame)
        self.agent.heading_global_frame = selected_heading
Пример #5
0
    def step(self, action, dt):
        selected_speed = action[0]
        selected_heading = wrap(action[1] + self.agent.heading_global_frame)

        dx = selected_speed * np.cos(selected_heading) * dt
        dy = selected_speed * np.sin(selected_heading) * dt
        self.agent.pos_global_frame += np.array([dx, dy])

        self.agent.vel_global_frame[0] = selected_speed * np.cos(selected_heading)
        self.agent.vel_global_frame[1] = selected_speed * np.sin(selected_heading)
        self.agent.speed_global_frame = selected_speed
        self.agent.delta_heading_global_frame = wrap(selected_heading -
                                               self.agent.heading_global_frame)
        self.agent.heading_global_frame = selected_heading

        # turning dir: needed for cadrl value fn
        if abs(self.agent.turning_dir) < 1e-5:
            self.agent.turning_dir = 0.11 * np.sign(selected_heading)
        elif self.agent.turning_dir * selected_heading < 0:
            self.agent.turning_dir = max(-np.pi, min(np.pi, -self.agent.turning_dir + selected_heading))
        else:
            self.agent.turning_dir = np.sign(self.agent.turning_dir) * max(0.0, abs(self.agent.turning_dir)-0.1)
    def step(self, action, dt):
        """ 

        In the global frame, assume the agent instantaneously turns by :code:`heading`
        and moves forward at :code:`speed` for :code:`dt` seconds.  
        Add that offset to the current position. Update the velocity in the
        same way. Also update the agent's turning direction (only used by CADRL).

        Args:
            action (list): [delta heading angle, speed] command for this agent
            dt (float): time in seconds to execute :code:`action`
    
        """
        selected_speed = action[0]
        selected_heading = wrap(action[1] + self.agent.heading_global_frame)

        dx = selected_speed * np.cos(selected_heading) * dt
        dy = selected_speed * np.sin(selected_heading) * dt
        self.agent.pos_global_frame += np.array([dx, dy])

        self.agent.vel_global_frame[0] = selected_speed * np.cos(
            selected_heading)
        self.agent.vel_global_frame[1] = selected_speed * np.sin(
            selected_heading)
        self.agent.speed_global_frame = selected_speed
        self.agent.delta_heading_global_frame = wrap(
            selected_heading - self.agent.heading_global_frame)
        self.agent.heading_global_frame = selected_heading

        # turning dir: needed for cadrl value fn
        if abs(self.agent.turning_dir) < 1e-5:
            self.agent.turning_dir = 0.11 * np.sign(selected_heading)
        elif self.agent.turning_dir * selected_heading < 0:
            self.agent.turning_dir = max(
                -np.pi, min(np.pi, -self.agent.turning_dir + selected_heading))
        else:
            self.agent.turning_dir = np.sign(self.agent.turning_dir) * max(
                0.0,
                abs(self.agent.turning_dir) - 0.1)
Пример #7
0
    def find_next_action(self, obs, agents, i):
        host_agent = agents[i]
        other_agents = agents[:i]+agents[i+1:]
        agent_state = self.convert_host_agent_to_cadrl_state(host_agent)
        other_agents_state, other_agents_actions = self.convert_other_agents_to_cadrl_state(host_agent, other_agents)
        # value = self.value_net.find_states_values(agent_state, other_agents_state)
        if len(other_agents_state) > 0:
            action = self.value_net.find_next_action(agent_state, other_agents_state, other_agents_actions)
            # action[0] /= host_agent.pref_speed
            action[1] = util.wrap(action[1]-host_agent.heading_global_frame)
        else:
            action = np.array([1.0, -self.heading_ego_frame])

        return action
Пример #8
0
    def query_and_rescale_action(self, host_agent, agent_state,
                                 other_agents_state, other_agents_actions):
        """ If there's nobody around, just go straight to goal, otherwise query DNN and make heading action an offset from current heading

        """
        if len(other_agents_state) > 0:
            action = self.value_net.find_next_action(agent_state,
                                                     other_agents_state,
                                                     other_agents_actions)
            # action[0] /= host_agent.pref_speed
            action[1] = util.wrap(action[1] - host_agent.heading_global_frame)
        else:
            action = np.array([1.0, -self.heading_ego_frame])
        return action
    def step(self, action, dt):
        selected_speed = np.clip(
            np.linalg.norm(self.agent.vel_global_frame) + action[0] * dt, 0,
            self.max_vel)
        turning_rate = self.agent.angular_speed_global_frame + action[1] * dt

        self.agent.angular_speed_global_frame = np.clip(
            turning_rate, -self.max_turn_rate, self.max_turn_rate)

        selected_heading = wrap(self.agent.angular_speed_global_frame * dt +
                                self.agent.heading_global_frame)

        dx = selected_speed * np.cos(selected_heading) * dt
        dy = selected_speed * np.sin(selected_heading) * dt
        self.agent.pos_global_frame += np.array([dx, dy])

        self.agent.vel_global_frame[0] = selected_speed * np.cos(
            selected_heading)
        self.agent.vel_global_frame[1] = selected_speed * np.sin(
            selected_heading)
        self.agent.speed_global_frame = selected_speed
        self.agent.delta_heading_global_frame = wrap(
            selected_heading - self.agent.heading_global_frame)
        self.agent.heading_global_frame = selected_heading
Пример #10
0
    def set_state(self, px, py, vx=None, vy=None, heading=None):
        """ Without doing a full reset, update the agent's current state (pos, vel, heading).

        This is useful in conjunction with (:class:`~gym_collision_avoidance.envs.dynamics.ExternalDynamics.ExternalDynamics`).
        For instance, if Agents in this environment should be aware of a real robot or one from a more realistic simulator (e.g., Gazebo),
        you could just call set_state each sim step based on what the robot/Gazebo tells you.

        If vx, vy not provided, will interpolate based on new&old position. Same for heading.

        Args:
            px (float or int): x position of agent in global frame right now
            py (float or int): y position of agent in global frame right now
            vx (float or int): x velocity of agent in global frame right now
            vy (float or int): y velocity of agent in global frame right now
            heading (float): angle of agent in global frame right now
        """
        if vx is None or vy is None:
            if self.step_num == 0:
                # On first timestep, just set to zero
                self.vel_global_frame = np.array([0,0])
            else:
                # Interpolate velocity from last pos
                self.vel_global_frame = (np.array([px, py]) - self.pos_global_frame) / self.dt_nominal
        else:
            self.vel_global_frame = np.array([vx, vy])

        if heading is None:
            # Estimate heading to be the direction of the velocity vector
            heading = np.arctan2(self.vel_global_frame[1], self.vel_global_frame[0])
            self.delta_heading_global_frame = wrap(heading - self.heading_global_frame)
        else:
            self.delta_heading_global_frame = wrap(heading - self.heading_global_frame)

        self.pos_global_frame = np.array([px, py])
        self.speed_global_frame = np.linalg.norm(self.vel_global_frame)
        self.heading_global_frame = heading
Пример #11
0
    def update_ego_frame(self):
        # Compute heading w.r.t. ref_prll, ref_orthog coordinate axes
        self.agent.ref_prll, self.agent.ref_orth = self.agent.get_ref()
        ref_prll_angle_global_frame = np.arctan2(self.agent.ref_prll[1],
                                                 self.agent.ref_prll[0])
        self.agent.heading_ego_frame = wrap(self.agent.heading_global_frame -
                                            ref_prll_angle_global_frame)

        # Compute velocity w.r.t. ref_prll, ref_orthog coordinate axes
        cur_speed = math.sqrt(self.agent.vel_global_frame[0]**2 +
                              self.agent.vel_global_frame[1]**
                              2)  # much faster than np.linalg.norm
        v_prll = cur_speed * np.cos(self.agent.heading_ego_frame)
        v_orthog = cur_speed * np.sin(self.agent.heading_ego_frame)
        self.agent.vel_ego_frame = np.array([v_prll, v_orthog])

        self.agent.rel_goal = self.agent.goal_global_frame - self.agent.pos_global_frame
Пример #12
0
    def near_goal_smoother(self, dist_to_goal, pref_speed, heading,
                           raw_action):
        kp_v = 0.5
        kp_r = 1

        if dist_to_goal < 2.0:
            near_goal_action = np.empty((2, 1))
            pref_speed = max(min(kp_v * (dist_to_goal - 0.1), pref_speed), 0.0)
            near_goal_action[0] = min(raw_action[0], pref_speed)
            turn_amount = max(min(kp_r * (dist_to_goal - 0.1), 1.0),
                              0.0) * raw_action[1]
            near_goal_action[1] = wrap(turn_amount + heading)
        if dist_to_goal < 0.3:
            near_goal_action = np.array([0., 0.])
        else:
            near_goal_action = raw_action

        return near_goal_action
Пример #13
0
    def update_ego_frame(self):
        """ Update agent's heading and velocity by converting those values from the global to ego frame.

        This should be run every time :code:`step` is called (add to :code:`step`?)

        """
        # Compute heading w.r.t. ref_prll, ref_orthog coordinate axes
        self.agent.ref_prll, self.agent.ref_orth = self.agent.get_ref()
        ref_prll_angle_global_frame = np.arctan2(self.agent.ref_prll[1],
                                                 self.agent.ref_prll[0])
        self.agent.heading_ego_frame = wrap(self.agent.heading_global_frame -
                                            ref_prll_angle_global_frame)

        # Compute velocity w.r.t. ref_prll, ref_orthog coordinate axes
        cur_speed = math.sqrt(self.agent.vel_global_frame[0]**2 +
                              self.agent.vel_global_frame[1]**
                              2)  # much faster than np.linalg.norm
        v_prll = cur_speed * np.cos(self.agent.heading_ego_frame)
        v_orthog = cur_speed * np.sin(self.agent.heading_ego_frame)
        self.agent.vel_ego_frame = np.array([v_prll, v_orthog])