class SingleTMaze(MiniGridEnv):
    is_double = False
    reward_values = dict(goal=1, fake_goal=0.1)
    view_size: int = None

    def __init__(self, corridor_length=3, reward_position=0, max_steps=None, is_double=False, view_size=None,
                 max_corridor_length=None):
        if max_corridor_length is None:
            max_corridor_length = corridor_length
        self.max_corridor_length = max_corridor_length
        self.view_size = view_size if view_size is not None else 7
        self.is_double = is_double
        self.reward_position = reward_position
        self.corridor_length = corridor_length
        assert corridor_length > 0

        if max_steps is None:
            max_steps = 4 + 4 * corridor_length

        super().__init__(
            grid_size=3 + 2 * self.max_corridor_length,
            max_steps=max_steps,
            see_through_walls=True,  # True for maximum performance
            agent_view_size=self.view_size,
        )
        self.reward_range = (min(self.reward_values["fake_goal"], 0), self.reward_values["goal"])

    @property
    def mission(self):
        goals = ["UPPER LEFT", "UPPER RIGHT", "LOWER RIGHT", "LOWER LEFT"]
        return f'Goal is {goals[self.reward_position]}'

    def _gen_grid(self, width, height):
        # Create an empty grid
        self.grid = Grid(width, height)

        # Place the agent in the top-left corner
        self.start_pos = (int(width / 2), int(height / 2))
        self.start_dir = 3

        # Create walls
        for x in range(0, width):
            for y in range(0, height):
                self.grid.set(x, y, Wall())

        # Create paths
        if self.is_double:
            for y in range(height // 2 - self.corridor_length, height // 2 + self.corridor_length + 1):
                self.grid.set(width // 2, y, None)
            for x in range(width // 2 - self.corridor_length, width // 2 + self.corridor_length + 1):
                self.grid.set(x, height // 2 - self.corridor_length, None)
                self.grid.set(x, height // 2 + self.corridor_length, None)
        else:
            for y in range(height // 2 - self.corridor_length, height // 2 + 1):
                self.grid.set(width // 2, y, None)
            for x in range(width // 2 - self.corridor_length, width // 2 + self.corridor_length + 1):
                self.grid.set(x, height // 2 - self.corridor_length, None)

        # Create rewards
        reward_positions = self._reward_positions(width, height)
        self._gen_rewards(reward_positions)

    def _reward_positions(self, width, height):
        reward_positions = [
            (width // 2 - self.corridor_length, height // 2 - self.corridor_length),
            (width // 2 + self.corridor_length, height // 2 - self.corridor_length),
            (width // 2 + self.corridor_length, height // 2 + self.corridor_length),
            (width // 2 - self.corridor_length, height // 2 + self.corridor_length),
        ]
        if not self.is_double:
            reward_positions = reward_positions[:2]
        return reward_positions

    def _reward(self):
        min_steps = (1 + 2 * self.corridor_length)
        if self.is_double and self.reward_position > 1:
            min_steps += 2
        redundant_steps = max(0, self.step_count - min_steps)
        max_steps = self.max_steps - min_steps + 1
        cell = self.grid.get(self.agent_pos[0], self.agent_pos[1])
        max_reward = self.reward_values["fake_goal"]
        if hasattr(cell, "is_goal") and cell.is_goal:
            max_reward = self.reward_values["goal"]
        return min(max_reward, max_reward * (1 - min(1, (redundant_steps / max_steps))))

    def _gen_rewards(self, rewards_pos: List[Tuple[int, int]]):
        for i, (x, y) in enumerate(rewards_pos):
            g = Goal()
            self.grid.set(x, y, g)
            g.is_goal = False
            if self.reward_position == i % len(rewards_pos):
                g.is_goal = True

    def render(self, mode='human', close=False, **kwargs):
        reward_positions = self._reward_positions(width=self.width, height=self.height)
        goal = self.grid.get(*reward_positions[self.reward_position])
        assert goal.is_goal
        start_color = goal.color
        goal.color = 'blue'
        ret = super().render(mode, close, **kwargs)
        goal.color = start_color
        return ret
Пример #2
0
class NineRoomsEnv(MiniGridSimple):

    # Only 4 actions needed, left, right, up and down

    class NineRoomsCardinalActions(IntEnum):
        # Cardinal movement
        right = 0
        down = 1
        left = 2
        up = 3

        def __len__(self):
            return 4

    def __init__(
        self,
        grid_size=20,
        passage_size=1,
        max_steps=100,
        seed=133,
        rnd_start=0,
        start_state_exclude_rooms=[],
    ):

        self.grid_size = grid_size
        self.passage_size = passage_size

        self._goal_default_pos = (1, 1)

        # set to 1 if agent is to be randomly spawned
        self.rnd_start = rnd_start

        # If self.rnd_start =1, don't spawn in these rooms
        self.start_state_exclude_rooms = start_state_exclude_rooms

        super().__init__(grid_size=grid_size,
                         max_steps=max_steps,
                         seed=seed,
                         see_through_walls=False)

        self.nActions = len(NineRoomsEnv.NineRoomsCardinalActions)

        # Set the action and observation spaces
        self.actions = NineRoomsEnv.NineRoomsCardinalActions

        self.action_space = spaces.Discrete(self.nActions)

        self.max_cells = (grid_size - 1) * (grid_size - 1)

        self.observation_space = spaces.Tuple(
            [spaces.Discrete(grid_size),
             spaces.Discrete(grid_size)])

        self.observation_size = self.grid_size * self.grid_size
        self.observation_shape = (self.observation_size, )

        self.T = max_steps

        # Change the observation space to return the position in the grid

    @property
    def category(self):
        # [TODO] Make sure this doesn't break after self.agent_pos is changed to numpy.ndarray
        return self.cell_cat_map[self.agent_pos]

    def reward(self):
        # -1 for every action except if the action leads to the goal state
        return 1 if self.success else 0

    def _gen_grid(self, width, height, val=False, seen=True):

        # Create the grid
        self.grid = Grid(width, height)

        # Generate surrounding walls
        self.grid.horz_wall(0, 0)
        self.grid.horz_wall(0, height - 1)
        self.grid.vert_wall(0, 0)
        self.grid.vert_wall(width - 1, 0)

        # Place horizontal walls through the grid
        self.grid.horz_wall(0, height // 3)
        self.grid.horz_wall(0, (2 * height) // 3)

        # Place vertical walls through the grid
        self.grid.vert_wall(width // 3, 0)
        self.grid.vert_wall((2 * width) // 3, 0)

        # Create passages
        passage_anchors = [(width // 3, height // 3),
                           (width // 3, (2 * height) // 3),
                           ((2 * width) // 3, height // 3),
                           ((2 * width) // 3, (2 * height) // 3)]
        passage_cells = []
        for anchor in passage_anchors:
            for delta in range(-1 * self.passage_size, self.passage_size + 1):
                passage_cells.append((anchor[0] + delta, anchor[1]))
                passage_cells.append((anchor[0], anchor[1] + delta))

        for cell in passage_cells:
            self.grid.set(*cell, None)

        # Even during validation, start state distribution
        # should be the same as that during training
        if not self.rnd_start:
            self._agent_default_pos = ((width - 2) // 2, (height - 2) // 2)
        else:
            self._agent_default_pos = None

        # Place the agent at the center
        if self._agent_default_pos is not None:
            self.start_pos = self._agent_default_pos
            self.grid.set(*self._agent_default_pos, None)
            self.start_dir = self._rand_int(
                0, 4)  # Agent direction doesn't matter
        else:

            if len(self.start_state_exclude_rooms) == 0:
                self.place_agent()
            else:
                valid_start_pos = []
                if seen:
                    exclude_from = self.start_state_exclude_rooms
                else:
                    exclude_from = [
                        x for x in range(1, 10)
                        if x not in self.start_state_exclude_rooms
                    ]
                for room in range(1, 10):
                    if room in exclude_from:
                        continue
                    # Ignore that there are walls for now, can handle that with rejection sampling

                    # Get x coordinates of allowed cells
                    valid_x = []
                    if room % 3 == 1:
                        valid_x = list(range(1, width // 3))
                    elif room % 3 == 2:
                        valid_x = list(range(width // 3 + 1, (2 * width) // 3))
                    else:
                        valid_x = list(range((2 * width) // 3 + 1, width - 1))

                    # Get valid y-coordinates of allowed cells
                    valid_y = []
                    if (room - 1) // 3 == 0:
                        valid_y = list(range(1, height // 3))
                    elif (room - 1) // 3 == 1:
                        valid_y = list(
                            range(height // 3 + 1, (2 * height) // 3))
                    else:
                        valid_y = list(range((2 * height) // 3 + 1,
                                             height - 1))

                    room_cells = list(product(valid_x, valid_y))

                    valid_start_pos += room_cells

                # Make sure start position doesn't conflict with other cells
                while True:

                    _start_pos = valid_start_pos[np.random.choice(
                        len(valid_start_pos))]
                    row = _start_pos[1]
                    col = _start_pos[0]
                    cell = self.grid.get(row, col)

                    if cell is None or cell.can_overlap():
                        break

                self.start_pos = (col, row)
                self.start_dir = self._rand_int(
                    0, 4)  # Agent direction doesn't matter

        goal = Goal()
        self.grid.set(*self._goal_default_pos, goal)
        goal.init_pos = goal.curr_pos = self._goal_default_pos

        self.mission = goal.init_pos

    def reset(self, val=False, seen=True):

        obs, info = super().reset(val=val, seen=seen)

        # add state feature to obs
        state_feat = self._encode_state(obs['agent_pos'])

        obs.update(dict(state_feat=state_feat))

        return obs, info

    def step(self, action):

        self.step_count += 1
        '''
         Reward doesn't depend on action, but just state.
         reward = -1 if not (in_goal_state) else 0
        '''

        if not self.done:
            # check if currently at the goal state
            if self.agent_pos == self.mission:
                # No penalty, episode done
                self.done = True
                self.success = True
            else:
                # Cardinal movement
                if action in self.move_actions:
                    move_pos = self.around_pos(action)
                    fwd_cell = self.grid.get(*move_pos)

                    self.agent_dir = (action - 1) % 4

                    if fwd_cell == None or fwd_cell.can_overlap(
                    ) or self.is_goal(move_pos):
                        self.agent_pos = move_pos
                else:
                    raise ValueError("Invalid Action: {} ".format(action))

        reward = self.reward()
        if self.step_count >= self.max_steps - 1:
            # print("Max Steps Exceeded.")
            self.done = True

        obs = self.gen_obs()

        # Add state features to the observation
        state_feat = self._encode_state(obs['agent_pos'])

        obs.update(dict(state_feat=state_feat))

        info = {
            'done': self.done,
            'agent_pos': np.array(self.agent_pos),
        }

        if self.render_rgb:
            info['rgb_grid'] = self.render(mode='rgb_array')

        if self.done:
            info.update({
                'image': self.encode_grid(),
                'success': self.success,
                'agent_pos': self.agent_pos,
            })

        return obs, reward, self.done, info

    def _encode_state(self, state):
        """
        Encode the state to generate observation.
        """
        feat = np.ones(self.width * self.height, dtype=float)
        curr_x, curr_y = state[1], state[0]

        curr_pos = curr_y * self.width + curr_x

        feat[curr_pos:] = 0

        return feat
Пример #3
0
class SnakeEnv(MiniGridEnv):
    """
    Empty grid environment, no obstacles, sparse reward
    """

    # Enumeration of possible actions
    class Actions(IntEnum):
        # Turn left, turn right, move forward
        left = 0
        right = 1
        forward = 2

    def __init__(self, size=9):

        super().__init__(grid_size=size,
                         max_steps=None,
                         see_through_walls=True)
        self.actions = SnakeEnv.Actions
        self.action_space = spaces.Discrete(len(self.actions))

        # self.observation_space = spaces.Dict({
        #     'image': spaces.Box(
        #         low=0,
        #         high=255,
        #         shape=(size,size,3),
        #         dtype='uint8'
        #     )
        #
        # })

    def spawn_new_food(self):
        empties = [(i, j) for i in range(self.grid.height)
                   for j in range(self.grid.width)
                   if self.grid.get(i, j) is None
                   and self.grid.get(i, j) != tuple(self.agent_pos)]
        self.grid.set(*random.choice(empties), Goal())

    def _gen_grid(self, width, height):
        # Create an empty grid
        self.grid = Grid(width, height)

        self.grid.wall_rect(0, 0, width, height)

        # self.start_pos = (2, 2)
        yl, xl, _ = self.observation_space.spaces['image'].shape
        self.start_pos = (random.randint(2, yl - 2), random.randint(2, xl - 2))
        self.agent_pos = self.start_pos  #TODO: the env holding agent traits is shit!
        self.start_dir = random.randint(0, 3)
        self.agent_dir = self.start_dir
        self.snake = Snake(
            [self.start_pos,
             tuple(self.start_pos - self.dir_vec)])
        [self.grid.set(*pos, Lava()) for pos in self.snake.body]

        self.spawn_new_food()

        self.mission = None

    def reset(self):
        return super().reset()

    # def gen_obs(self):
    #     image = self.grid.encode()
    #
    #     obs = {
    #         'image': image,
    #         'direction': self.agent_dir,
    #         'mission': self.mission
    #     }
    #
    #     return obs

    def step(self, action):
        self.step_count += 1

        done = False

        if action == self.actions.left:
            self.agent_dir = (self.agent_dir - 1) % 4

        elif action == self.actions.right:
            self.agent_dir = (self.agent_dir + 1) % 4

        elif action == self.actions.forward:
            pass
        else:
            assert False, "unknown action: %d" % action

        fwd_pos = self.agent_pos + self.dir_vec
        fwd_cell = self.grid.get(*fwd_pos)

        if fwd_cell is None:
            self.grid.set(*self.agent_pos, Lava())
            self.snake.grow_head(*fwd_pos)
            self.grid.set(*self.snake.rm_tail(), None)
            self.agent_pos = fwd_pos

            reward = -0.001

        elif fwd_cell.type == 'goal':
            self.grid.set(*self.agent_pos, Lava())
            self.snake.grow_head(*fwd_pos)
            self.agent_pos = fwd_pos

            self.spawn_new_food()
            reward = 1.0

        elif (fwd_cell.type == 'lava' or fwd_cell.type == 'wall'):
            reward = -1.0
            done = True

        else:
            assert False

        if self.step_count == 1 and done:
            assert False

        obs = self.gen_obs()
        assert any([
            isinstance(self.grid.get(i, j), Goal)
            for i in range(self.grid.height) for j in range(self.grid.width)
        ])
        return obs, reward, done, {}
Пример #4
0
class Cluttered(MiniGridSimple):

    # Only 4 actions needed, left, right, up and down

    class ClutteredCardinalActions(IntEnum):
        # Cardinal movement
        right = 0
        down = 1
        left = 2
        up = 3

        def __len__(self):
            return 4

    def __init__(
        self,
        grid_size=20,
        num_objects=5,
        obj_size=3,
        max_steps=100,
        seed=133,
        state_encoding="thermal",
        rnd_start=0,
    ):

        self.state_encoding = state_encoding
        self.grid_size = grid_size
        self.num_objects = num_objects
        self.obj_size = obj_size

        # set to 1 if agent is to be randomly spawned
        self.rnd_start = rnd_start
        self.grid_seed = 12

        # This only works for 15x15 grid with 6 obstacles
        #self._goal_default_pos = (6, 10)

        #self._goal_default_pos = (self.grid_size-2, self.grid_size-2)
        self._goal_default_pos = (7, 12)

        # This is used for some of the experiments.
        self._agent_default_pos = (7, 6)

        # If self.rnd_start =1, don't spawn in these rooms
        super().__init__(grid_size=grid_size,
                         max_steps=max_steps,
                         seed=seed,
                         see_through_walls=False)

        self.nActions = len(Cluttered.ClutteredCardinalActions)

        # Set the action and observation spaces
        self.actions = Cluttered.ClutteredCardinalActions

        self.action_space = spaces.Discrete(self.nActions)

        self.max_cells = (grid_size - 1) * (grid_size - 1)

        self.observation_space = spaces.Tuple(
            [spaces.Discrete(grid_size),
             spaces.Discrete(grid_size)])

        self.observation_size = self.grid_size * self.grid_size
        self.observation_shape = (self.observation_size, )

        self.T = max_steps

        # Change the observation space to return the position in the grid

    def reward(self):
        # -1 for every action except if the action leads to the goal state
        #return 0 if self.success else -1
        return 0 if self.success else -1 / self.T

    def _gen_grid(self, width, height, val=False, seen=True):

        assert width >= 10 and height >= 10, "Environment too small to place objects"
        # Create the grid
        self.grid = Grid(width, height)

        # Generate surrounding walls
        self.grid.horz_wall(0, 0)
        self.grid.horz_wall(0, height - 1)
        self.grid.vert_wall(0, 0)
        self.grid.vert_wall(width - 1, 0)

        np.random.seed(self.grid_seed)

        for obj_idx in range(self.num_objects):

            while True:
                c_x, c_y = np.random.choice(list(range(
                    2, self.grid_size - 3))), np.random.choice(
                        list(range(2, self.grid_size - 3)))

                #obj_size = np.random.choice(list(range(1, self.obj_size+1)))
                obj_size = self.obj_size

                if obj_size == 3:
                    cells = list(
                        product([c_x - 1, c_x, c_x + 1],
                                [c_y - 1, c_y, c_y + 1]))
                elif obj_size == 2:
                    cells = list(product([c_x, c_x + 1], [c_y, c_y + 1]))
                elif obj_size == 1:
                    cells = list(product([c_x], [c_y]))
                else:
                    raise ValueError

                valid = True
                for cell in cells:
                    cell = self.grid.get(cell[0], cell[1])

                    if not (cell is None or cell.can_overlap()):
                        valid = False
                        break

                if valid:
                    for cell in cells:
                        self.grid.set(*cell, Wall())
                    break

        # Set the start position and the goal position depending upon where the obstacles are present
        goal = Goal()
        # [NOTE] : This is a hack, add option to set goal location from arguments.

        self.grid.set(*self._goal_default_pos, goal)
        goal.init_pos = goal.curr_pos = self._goal_default_pos

        self.mission = goal.init_pos

        self.start_pos = self._agent_default_pos

    def reset(self, val=False, seen=True):

        obs, info = super().reset(val=val, seen=seen)

        # add state feature to obs
        state_feat = self._encode_state(obs['agent_pos'])

        obs.update(dict(state_feat=state_feat))

        return obs, info

    def step(self, action):

        self.step_count += 1
        '''
         Reward doesn't depend on action, but just state.
         reward = -1 if not (in_goal_state) else 0
        '''

        if not self.done:
            # check if currently at the goal state
            if self.agent_pos == self.mission:
                # No penalty, episode done
                self.done = True
                self.success = True
            else:
                # Cardinal movement
                if action in self.move_actions:
                    move_pos = self.around_pos(action)
                    fwd_cell = self.grid.get(*move_pos)

                    self.agent_dir = (action - 1) % 4

                    if fwd_cell == None or fwd_cell.can_overlap(
                    ) or self.is_goal(move_pos):
                        self.agent_pos = move_pos
                else:
                    raise ValueError("Invalid Action: {} ".format(action))

        reward = self.reward()
        if self.step_count >= self.max_steps - 1:
            # print("Max Steps Exceeded.")
            self.done = True

        obs = self.gen_obs()

        # Add state features to the observation
        state_feat = self._encode_state(obs['agent_pos'])

        obs.update(dict(state_feat=state_feat))

        info = {
            'done': self.done,
            'agent_pos': np.array(self.agent_pos),
        }

        if self.render_rgb:
            info['rgb_grid'] = self.render(mode='rgb_array')

        if self.done:
            info.update({
                'image': self.encode_grid(),
                'success': self.success,
                'agent_pos': self.agent_pos,
            })

        return obs, reward, self.done, info

    def _encode_state(self, state):
        """
        Encode the state to generate observation.
        """
        feat = np.ones(self.width * self.height, dtype=float)
        curr_x, curr_y = state[1], state[0]

        curr_pos = curr_y * self.width + curr_x
        if self.state_encoding == "thermal":
            feat[curr_pos:] = 0
        elif self.state_encoding == "one-hot":
            feat[:] = 0
            feat[curr_pos] = 1

        return feat
Пример #5
0
class SnakeEnv(MiniGridEnv):
    class Actions(IntEnum):
        left = 0
        right = 1
        forward = 2

    def __init__(self, size=9):

        super().__init__(grid_size=size,
                         max_steps=None,
                         see_through_walls=True)
        self.actions = SnakeEnv.Actions
        self.action_space = spaces.Discrete(len(self.actions))

    def spawn_new_food(self):
        empties = [(i, j) for i in range(self.grid.height)
                   for j in range(self.grid.width)
                   if self.grid.get(i, j) is None
                   and self.grid.get(i, j) != tuple(self.agent_pos)]
        self.grid.set(*random.choice(empties), Goal())

    def _gen_grid(self, width, height):
        self.grid = Grid(width, height)

        self.grid.wall_rect(0, 0, width, height)

        # self.start_pos = (2, 2)
        yl, xl, _ = self.observation_space.spaces["image"].shape
        self.start_pos = (random.randint(2, yl - 2), random.randint(2, xl - 2))
        self.agent_pos = self.start_pos  # TODO: the env holding agent traits is shit!
        self.start_dir = random.randint(0, 3)
        self.agent_dir = self.start_dir
        self.snake = Snake(
            [self.start_pos,
             tuple(self.start_pos - self.dir_vec)])
        [self.grid.set(*pos, Lava()) for pos in self.snake.body]

        self.spawn_new_food()

        self.mission = None

    def reset(self):
        return super().reset()

    def step(self, action):
        self.step_count += 1

        done = False

        if action == self.actions.left:
            self.agent_dir = (self.agent_dir - 1) % 4

        elif action == self.actions.right:
            self.agent_dir = (self.agent_dir + 1) % 4

        elif action == self.actions.forward:
            pass
        else:
            assert False, "unknown action: %d" % action

        fwd_pos = self.agent_pos + self.dir_vec
        fwd_cell = self.grid.get(*fwd_pos)

        if fwd_cell is None:
            self.grid.set(*self.agent_pos, Lava())
            self.snake.grow_head(*fwd_pos)
            self.grid.set(*self.snake.rm_tail(), None)
            self.agent_pos = fwd_pos

            reward = -0.001

        elif fwd_cell.type == "goal":
            self.grid.set(*self.agent_pos, Lava())
            self.snake.grow_head(*fwd_pos)
            self.agent_pos = fwd_pos

            self.spawn_new_food()
            reward = 1.0

        elif fwd_cell.type == "lava" or fwd_cell.type == "wall":
            reward = -1.0
            done = True

        else:
            assert False

        if self.step_count == 1 and done:
            assert False

        obs = self.gen_obs()
        assert any([
            isinstance(self.grid.get(i, j), Goal)
            for i in range(self.grid.height) for j in range(self.grid.width)
        ])
        return obs, reward, done, {}
Пример #6
0
class EmptyGridWorld(MiniGridSimple):

    # Only 4 actions needed, left, right, up and down

    class CardnalActions(IntEnum):
        # Cardinal movement
        right = 0
        down = 1
        left = 2
        up = 3

        def __len__(self):
            return 4

    def __init__(
        self,
        grid_size=20,
        max_steps=100,
        state_encoding="thermal",
        seed=133,
        rnd_start=0,
    ):

        self.state_encoding = state_encoding
        self.grid_size = grid_size

        self._goal_default_pos = (self.grid_size - 2, 1)

        # set to 1 if agent is to be randomly spawned
        self.rnd_start = rnd_start

        super().__init__(grid_size=grid_size,
                         max_steps=max_steps,
                         seed=seed,
                         see_through_walls=False)

        self.nActions = len(EmptyGridWorld.CardnalActions)

        # Set the action and observation spaces
        self.actions = EmptyGridWorld.CardnalActions

        self.action_space = spaces.Discrete(self.nActions)

        self.max_cells = (grid_size - 1) * (grid_size - 1)

        self.observation_space = spaces.Tuple(
            [spaces.Discrete(grid_size),
             spaces.Discrete(grid_size)])

        self.observation_size = self.grid_size * self.grid_size
        self.observation_shape = (self.observation_size, )

        self.T = max_steps

        # Change the observation space to return the position in the grid

    @property
    def category(self):
        # [TODO] Make sure this doesn't break after self.agent_pos is changed to numpy.ndarray
        return self.cell_cat_map[self.agent_pos]

    def reward(self):
        # -1 for every action except if the action leads to the goal state
        return 1 if self.success else -1 / self.T

    def _gen_grid(self, width, height, val=False, seen=True):

        # Create the grid
        self.grid = Grid(width, height)

        # Generate surrounding walls
        self.grid.horz_wall(0, 0)
        self.grid.horz_wall(0, height - 1)
        self.grid.vert_wall(0, 0)
        self.grid.vert_wall(width - 1, 0)

        # Even during validation, start state distribution
        # should be the same as that during training
        if not self.rnd_start:
            self._agent_default_pos = (1, self.grid_size - 2)
        else:
            self._agent_default_pos = None

        # Place the agent at the center
        if self._agent_default_pos is not None:
            self.start_pos = self._agent_default_pos
            self.grid.set(*self._agent_default_pos, None)
            self.start_dir = self._rand_int(
                0, 4)  # Agent direction doesn't matter

        goal = Goal()
        self.grid.set(*self._goal_default_pos, goal)

        goal.init_pos = goal.curr_pos = self._goal_default_pos

        self.mission = goal.init_pos

    def reset(self, val=False, seen=True):

        obs, info = super().reset(val=val, seen=seen)

        # add state feature to obs
        state_feat = self._encode_state(obs['agent_pos'])

        obs.update(dict(state_feat=state_feat))

        return obs, info

    def step(self, action):

        self.step_count += 1
        '''
         Reward doesn't depend on action, but just state.
         reward = -1 if not (in_goal_state) else 0
        '''

        if not self.done:
            # check if currently at the goal state
            if self.agent_pos == self.mission:
                # No penalty, episode done
                self.done = True
                self.success = True
            else:
                # Cardinal movement
                if action in self.move_actions:
                    move_pos = self.around_pos(action)
                    fwd_cell = self.grid.get(*move_pos)

                    self.agent_dir = (action - 1) % 4

                    if fwd_cell == None or fwd_cell.can_overlap(
                    ) or self.is_goal(move_pos):
                        self.agent_pos = move_pos
                else:
                    raise ValueError("Invalid Action: {} ".format(action))

        reward = self.reward()
        if self.step_count >= self.max_steps - 1:
            # print("Max Steps Exceeded.")
            self.done = True

        obs = self.gen_obs()

        # Add state features to the observation
        state_feat = self._encode_state(obs['agent_pos'])

        obs.update(dict(state_feat=state_feat))

        info = {
            'done': self.done,
            'agent_pos': np.array(self.agent_pos),
        }

        if self.render_rgb:
            info['rgb_grid'] = self.render(mode='rgb_array')

        if self.done:
            info.update({
                'image': self.encode_grid(),
                'success': self.success,
                'agent_pos': self.agent_pos,
            })

        return obs, reward, self.done, info

    def _encode_state(self, state):
        """
        Encode the state to generate observation.
        """

        feat = np.ones(self.width * self.height, dtype=float)
        curr_x, curr_y = state[0], state[1]

        curr_pos = curr_y * self.width + curr_x

        if self.state_encoding == "thermal":

            feat[curr_pos:] = 0
        elif self.state_encoding == "one-hot":
            feat[:] = 0
            feat[curr_pos] = 1

        return feat