Пример #1
0
class ChildrenValuePrinter(HumanPrintWrapper):
    def __init__(self, env, value_fun):
        """

    Args:
      value_fun: callable: obs, states -> value, which would be call by key
        `states`
    """
        super().__init__(env)
        self.render_env = SokobanEnv(**env.init_kwargs)
        self.value_fun = value_fun

    def formatted_state_value(self, state):
        return "{:.2f}".format(self.value_fun(states=state)[0][0])

    def build_texts(self, obs, reward, done, info):
        child_values = list()
        state = self.env.clone_full_state()
        value_str = self.formatted_state_value(state)
        for action in range(self.render_env.action_space.n):
            self.render_env.restore_full_state(state)
            self.render_env.step(action)
            child_state = self.render_env.clone_full_state()
            child_value_str = self.formatted_state_value(child_state)
            child_values.append(child_value_str)
        print('Children values: {}'.format(" ".join(child_values)))
        return [
            'Value: {}'.format(value_str),
            'Children values: {}'.format(" ".join(child_values))
        ]
def test_serialization(dim=(8, 8),
                       num_boxes=1,
                       mode='rgb_array',
                       seed=None,
                       curriculum=300):
    from ctypes import c_uint
    if not seed:
        _, seed = seeding.np_random(None)
    env = SokobanEnv(dim_room=dim,
                     max_steps=100,
                     num_boxes=num_boxes,
                     mode=mode,
                     curriculum=curriculum)
    env.seed(seed)
    env.reset()

    state = env.clone_full_state()
    obs = env.render(mode='rgb_array')
    value = np.float32(5.0)

    shapes = (state.shape, obs.shape, (1, ))
    type = (state.dtype, obs.dtype, np.float32)
    buf_size = env.max_steps * np.array([np.prod(x) for x in shapes])

    game = [(state, obs, value), (state, obs, value)]
    serial = serialize_game(game, type, buf_size)
    zz = np.frombuffer(serial, dtype=np.uint8)

    dgame = deserialize_game(serial, buf_size, shapes, type)

    return [[(i == j).all() for i, j in zip(a, b)]
            for a, b in zip(game, dgame)]
class PolicyFromFullTree(Policy):
    def __init__(self, value_fn, env_kwargs, depth=4):
        self.render_env = SokobanEnv(**env_kwargs)
        self.env_n_actions = self.render_env.action_space.n
        self.value_function = value_fn
        self.env = SokobanEnv(**env_kwargs)
        self.env.reset()
        self.depth = depth
        self.nodes = dict()

    def best_actions(self, state):
        # Produce all action sequences
        seq_ = [range(self.env.action_space.n)] * self.depth
        action_seq = list(product(*seq_))
        # print("len(action_seq) {}".format(len(action_seq)))
        for actions in action_seq:
            root_action = actions[0]
            self.env.restore_full_state(state)
            branch_reward = 0
            current_depth = 0
            for action in actions:
                current_depth += 1
                ob, reward, done, _ = self.env.step(action)
                branch_reward += reward
                node = tuple(self.env.clone_full_state())
                if node not in self.nodes:
                    value = self.value_function(
                        states=np.array(node)
                    )  # self.model.predict(np.expand_dims(ob, axis=0))[0]
                    if done:
                        value += 1000
                    self.nodes[node] = (value, branch_reward, current_depth,
                                        root_action, actions[:current_depth])
                else:
                    value, previous_reward, previous_depth, _, _ = self.nodes[
                        node]
                    if previous_depth > current_depth:
                        # if previous_reward > branch_reward:
                        #   assert branch_reward > 10., "{} {}".format(previous_reward, branch_reward)
                        self.nodes[node] = (value, branch_reward,
                                            current_depth, root_action,
                                            actions[:current_depth])
                if done:
                    break
        # self.nodes.values()
        best_node = max(
            self.nodes.keys(),
            key=(lambda node: self.nodes[node][0] + self.nodes[node][1]))
        node_value, branch_reward, current_depth, root_action, actions = self.nodes[
            best_node]
        # print("Distinct leaves {}".format(len(self.nodes)))
        # print("Node value {}, reward {:.1f}, depth {}, action {}, actions {}".format(
        #     node_value, branch_reward, current_depth, root_action, actions))
        return [root_action]
def test_room_to_binary_map_and_back():
    env = SokobanEnv()
    for _ in range(100):
        env.reset()
        flat_state = env.clone_full_state()
        (state, structure) = render_utils.get_room_state_and_structure(
            flat_state, env.dim_room)
        room = render_utils.make_standalone_state(state, structure)
        binary_map = render_utils.room_to_binary_map(room)
        converted_room = render_utils.binary_map_to_room(binary_map)
        assert (converted_room == room).all()
def test_recover(dim=(13, 13), num_boxes=5, mode='rgb_array', seed=None):
    if not seed:
        _, seed = seeding.np_random(None)
    env = SokobanEnv(dim_room=dim,
                     max_steps=100,
                     num_boxes=num_boxes,
                     mode=mode,
                     max_distinct_rooms=10)
    env.seed(seed)
    env.reset()
    obs = env.render()
    state = env.clone_full_state()
    print(state == env.recover_state(obs))
Пример #6
0
def generate_next_frame_and_done_data(env_kwargs,
                                      seed,
                                      n_trajectories=100,
                                      trajectory_len=40,
                                      clone_done=100):
    num_boxes_range = next_frame_and_done_data_params()["num_boxes_range"]
    if num_boxes_range is None:
        print("num_boxes_range", num_boxes_range)
        num_boxes_range = [env_kwargs["num_boxes"]]
    env_kwargs = deepcopy(env_kwargs)
    np.random.seed(seed)
    env_kwargs["num_boxes"] = num_boxes_range[np.random.randint(
        len(num_boxes_range))]

    render_env = SokobanEnv(**env_kwargs)
    render_env.seed(seed)
    trajectories = list()  # [(observations, actions, done), ...]
    for i in range(n_trajectories):
        render_env.reset()
        state = render_env.clone_full_state()
        # generate random path
        trajectories.append(
            random_trajectory(state, render_env, trajectory_len))

    # parse trajectories into arrays
    data_x = list()
    data_y_next_frame = list()
    data_y_if_done = list()

    for obs, actions, done in trajectories:
        data_x.extend([
            image_with_embedded_action(ob, action, render_env.action_space.n)
            for ob, action in zip(obs[:-1], actions)
        ])
        data_y_next_frame.extend([ob for ob in obs[1:]])
        data_y_if_done.extend([False] * (len(actions) - 1) + [done])

        if done and (clone_done > 1):
            data_x.extend([data_x[-1].copy() for _ in range(clone_done)])
            data_y_next_frame.extend(
                [data_y_next_frame[-1].copy() for _ in range(clone_done)])
            data_y_if_done.extend(
                [data_y_if_done[-1] for _ in range(clone_done)])

    data_x = np.array(data_x)
    data_y = {
        Target.NEXT_FRAME.value: np.array(data_y_next_frame),
        "if_done": np.array(data_y_if_done).reshape((-1, 1)).astype(int),
    }
    return data_x, data_y, {}
class QFromV(object):
    def __init__(self,
                 value_function,
                 env_kwargs,
                 nan_for_zero_value=True,
                 copy_negative=True):
        self.value_function = value_function
        self.env = SokobanEnv(**env_kwargs)
        self.env.reset()
        self.nan_for_zero_value = nan_for_zero_value
        self.copy_negative_values = copy_negative

    @property
    def env_n_actions(self):
        return self.env.action_space.n

    def q_values(self, state):
        q_values = list()
        if self.nan_for_zero_value:
            # Value might not have children for Sokoban success states.
            if self.value_function(states=state) == 0:
                return [np.nan] * self.env_n_actions
        if self.copy_negative_values:
            # For speed-up
            val = self.value_function(states=state)[0]
            if val < 0:
                return [val] * self.env_n_actions

        for action in range(self.env_n_actions):
            self.env.restore_full_state(state)
            ob, reward, done, _ = self.env.step(action)
            value = reward
            child_state = self.env.clone_full_state()
            if not done:
                value += self.value_function(states=child_state)[0]
            q_values.append(float(value))
        return q_values