def __init__(self): super().__init__() yes_node, no_node = (self.start().add(DummyAction()).add( Decision(MyModel())).add(yes=YesAction(), no=NoAction())) no_node.add(DummyAction()) self.end()
def create_graph(): """Create a graph which prints hello for each even number x in the input stream, using a conditional RuleBasedModel node and a HelloPrinter h1.Action.""" graph = Graph() graph.start() \ .add(Decision(SimpleRuleBasedModel(), result_field="predictions")) \ .add(yes=HelloPrinter(), no=NoOp()) graph.end() return graph
def __init__(self): super().__init__() yes_node, no_node = (self.start().add(Decision(MyModel())).add( yes=YesAction(), no=NoAction())) self.end() self.nodes.end.transform_output = lambda inputs: { 'result': inputs['results'] + inputs['no_results'] * 1000 }
def __init__(self): super().__init__() yes_node, no_node = (self.start().add(DummyAction()).add( Decision(MyModel())).add(yes=YesAction(), no=NoAction())) no_node.add(DummyAction()) self.end() self.nodes.YesAction.transform_output = lambda inputs: { 'yes_sum': inputs['results'] } self.nodes.NoAction.transform_output = lambda inputs: { 'no_sum': inputs['results'] }
def test_render_graph(self): class DummyModel(MLModel): pass g = Graph() g.start() g.add(DummyModel(), id='m1')\ .add(Decision(DummyModel(), id='m2'))\ .add( yes=Action(DummyModel(), id='m3'), no=Action(DummyModel(), id='m4'), ) g.end() g.visualize().to_dot()