Пример #1
0
    def test_eiger_high_level(self):
        self.outfile = self.working_dir + 'eiger.h5'
        TGT = h5.VirtualTarget(self.outfile, 'data', shape=(78, 200, 200))
        VMlist = []
        M_minus_1 = 0
        # Create the virtual dataset file
        with h5.File(self.outfile, 'w', libver='latest') as f:
            for foo in self.fname:
                in_data = h5.File(foo)['data']
                src_shape = in_data.shape
                in_data.file.close()
                M = M_minus_1 + src_shape[0]
                VSRC = h5.VirtualSource(foo, 'data', shape=src_shape)
                VM = h5.VirtualMap(VSRC,
                                   TGT[M_minus_1:M, :, :],
                                   dtype=np.float)
                VMlist.append(VM)
                M_minus_1 = M
            d = f.create_virtual_dataset(VMlist=VMlist, fillvalue=45)
            f.close()

        f = h5.File(self.outfile, 'r')['data']
        self.assertEqual(f[10, 100, 10], 0.0)
        self.assertEqual(f[30, 100, 100], 1.0)
        self.assertEqual(f[50, 100, 100], 2.0)
        self.assertEqual(f[70, 100, 100], 3.0)
        f.file.close()
Пример #2
0
 def make_linked_stack(self, fullname):
     """
     Actually makes the stacked dataset. This is a separate method since h5py's visit 
     items does not follow external links.
     
     fullname
         string key to the dataset to be converted into a stacked VDS
     """
     datashape = h5.File(self.source_path_pattern %
                         (self.file_numbers[0]))[fullname].shape
     outshape = (len(self.file_numbers), ) + datashape
     TGT = h5.VirtualTarget(self.target_path, fullname, shape=outshape)
     k = 0
     VMlist = []
     for fnum in self.file_numbers:
         print fnum
         source_path = self.source_path_pattern % (fnum)
         VSRC = h5.VirtualSource(source_path, fullname, shape=datashape)
         VM = h5.VirtualMap(VSRC, TGT[k:(k + 1):1], dtype=np.float)
         VMlist.append(VM)
         k += 1
     d = self.outfile.create_virtual_dataset(VMlist=VMlist, fillvalue=0)
     for key, val in h5.File(
             self.source_path_pattern %
         (self.file_numbers[0]))[fullname].attrs.iteritems():
         self.outfile[fullname].attrs[key] = val
Пример #3
0
    def test_percival_high_level(self):
        self.outfile = self.working_dir + 'percival.h5'
        VM = []
        # Create the virtual dataset file
        with h5.File(self.outfile, 'w', libver='latest') as f:
            TGT = h5.VirtualTarget(
                self.outfile,
                'data',
                shape=(79, 200, 200),
                maxshape=(None, 200, 200)
            )  # Virtual target is a representation of the output dataset
            k = 0
            for foo in self.fname:
                VSRC = h5.VirtualSource(foo,
                                        'data',
                                        shape=(20, 200, 200),
                                        maxshape=(None, 200, 200))
                VM.append(
                    h5.VirtualMap(VSRC, TGT[k:79:4, :, :], dtype=np.float))
                k += 1
            f.create_virtual_dataset(
                VMlist=VM,
                fillvalue=-5)  # pass the fill value and list of maps
            f.close()

        f = h5.File(self.outfile, 'r')['data']
        sh = f.shape
        line = f[:8, 100, 100]
        foo = np.array(2 * range(4))
        f.file.close()
        self.assertEqual(
            sh,
            (79, 200, 200),
        )
        np.testing.assert_array_equal(line, foo)
Пример #4
0
    def test_excalibur_high_level(self):
        self.outfile = self.working_dir + 'excalibur.h5'
        f = h5.File(self.outfile, 'w',
                    libver='latest')  # create an output file.
        in_key = 'data'  # where is the data at the input?
        in_sh = h5.File(self.fname[0],
                        'r')[in_key].shape  # get the input shape
        dtype = h5.File(self.fname[0], 'r')[in_key].dtype  # get the datatype
        # now generate the output shape
        vertical_gap = 10  # pixels spacing in the vertical
        nfiles = len(self.fname)
        print "nfiles is:" + str(nfiles)
        nframes = in_sh[0]
        width = in_sh[2]
        height = (in_sh[1] * nfiles) + (vertical_gap * (nfiles - 1))
        out_sh = (nframes, height, width)
        print out_sh, in_sh
        TGT = h5.VirtualTarget(
            self.outfile, 'data', shape=out_sh
        )  # Virtual target is a representation of the output dataset
        offset = 0  # initial offset
        print(offset + in_sh[1]) - offset
        VMlist = []  # place to put the maps
        for i in range(nfiles):
            print("frame_number is: %s, offset is:%s" % (str(i), offset)
                  )  # for feedback
            VSRC = h5.VirtualSource(
                self.fname[i], in_key,
                shape=in_sh)  #a representation of the input dataset
            VM = h5.VirtualMap(VSRC,
                               TGT[:, offset:(offset + in_sh[1]), :],
                               dtype=dtype)  # map them with indexing
            offset += in_sh[1] + vertical_gap  # increment the offset
            VMlist.append(VM)  # append it to the list

        f.create_virtual_dataset(
            VMlist=VMlist,
            fillvalue=0x1)  # pass the fill value and list of maps
        f.close()

        f = h5.File(self.outfile, 'r')['data']
        self.assertEqual(f[3, 100, 0], 0.0)
        self.assertEqual(f[3, 260, 0], 1.0)
        self.assertEqual(f[3, 350, 0], 3.0)
        self.assertEqual(f[3, 650, 0], 6.0)
        self.assertEqual(f[3, 900, 0], 9.0)
        self.assertEqual(f[3, 1150, 0], 12.0)
        self.assertEqual(f[3, 1450, 0], 15.0)
        f.file.close()
Пример #5
0
    def create_vds_maps(self, source, vds_data):
        """Create a list of VirtualMaps of raw data to the VDS.

        Args:
            source(Source): Source attributes
            vds_data(VDS): VDS attributes

        Returns:
            list(VirtualMap): Maps describing links between raw data and VDS

        """
        source_shape = source.frames + (source.height, source.width)
        vds = h5.VirtualTarget(self.output_file,
                               self.target_node,
                               shape=vds_data.shape)

        map_list = []
        current_position = 0
        for idx, dataset in enumerate(self.datasets):

            v_source = h5.VirtualSource(dataset,
                                        self.source_node,
                                        shape=source_shape)

            start = current_position
            stop = start + source.height + vds_data.spacing[idx]
            current_position = stop

            index = tuple([self.FULL_SLICE] * len(source.frames) +
                          [slice(start, stop)] + [self.FULL_SLICE])
            v_target = vds[index]
            v_map = h5.VirtualMap(v_source, v_target, dtype=source.dtype)

            self.logger.debug("Mapping dataset %s to %s of %s.",
                              dataset.split("/")[-1], index, self.name)
            map_list.append(v_map)

        return map_list
Пример #6
0
'''
https://support.hdfgroup.org/HDF5/docNewFeatures/VDS/HDF5-VDS-requirements-use-cases-2014-12-10.pdf
The eiger use case
'''

import h5py as h5
import numpy as np

f = h5py.File("VDS.h5", 'w', libver='latest')
files = ['1.h5', '2.h5', '3.h5', '4.h5', '5.h5']
entry_key = 'data'  # where the data is inside of the source files.
sh = h5.File(file_names_to_concatenate[0],
             'r')[entry_key].shape  # get the first ones shape.

TGT = h5.VirtualTarget(outfile,
                       outkey,
                       shape=(len(file_names_to_concatenate, ) + sh))
M_minus_1 = 0
for i in range(len(files)):
    M = M_minus_1 + sh[0]
    VSRC = h5.VirtualSource(file_names_to_concatenate[i], entry_key, shape=sh)
    VM = h5.VirtualMap(VSRC, TGT[M_minus_1:M:1, :, :], dtype=np.float)
    VMlist.append(VM)
    M_minus_1 = M

d = f.create_virtual_dataset(VMlist=VMlist, fillvalue=0)
f.close()
#
Пример #7
0
'''
https://support.hdfgroup.org/HDF5/docNewFeatures/VDS/HDF5-VDS-requirements-use-cases-2014-12-10.pdf
The dual pco edge use case
'''

import h5py as h5

f = h5.File('outfile.h5','w',libver='latest') # create an output file.
in_sh = h5.File('raw_file_1.h5','r')['data'].shape # get the input shape
dtype = h5.File('raw_file_1.h5','r')['data'].dtype # get the datatype
VSRC1 = h5.VirtualSource('raw_file_1.h5', 'data',shape=in_sh) #a representation of the input dataset
VSRC2 = h5.VirtualSource('raw_file_2.h5', 'data',shape=in_sh) #a representation of the input dataset 
TGT = h5.VirtualTarget('outfile.h5', 'data', shape=(in_sh[0], 2*in_sh[1]+gap, in_sh[3]))
VM1 = h5.VirtualMap(VSRC1, TGT[0:in_sh[0]:1,:,:], dtype=dtype)
VM2 = h5.VirtualMap(VSRC2, TGT[(in_sh[0]+gap):(2*in_sh[0]+gap+1):1,:,:], dtype=dtype)
f.create_virtual_dataset(VMlist=[VM1, VM2], fillvalue=0x1) # pass the fill value and list of maps
f.close()# close

Пример #8
0
'''
https://support.hdfgroup.org/HDF5/docNewFeatures/VDS/HDF5-VDS-requirements-use-cases-2014-12-10.pdf
The excalibur use case
'''
import h5py as h5

f = h5.File('full_time_series.h5', 'w',
            libver='latest')  # create an output file.
in_key = 'data'  # where is the data at the input?
dtype = h5.File('raw_file_1.h5')['data'].dtype
outshape = (799, 2000, 2000)
TGT = h5.VirtualTarget(
    'full_time_series.h5', in_key,
    shape=outshape)  # Virtual target is a representation of the output dataset
VSRC1 = h5.VirtualSource('raw_file_1.h5', 'data',
                         shape=(200, 2000,
                                2000))  #a representation of the input dataset
VSRC2 = h5.VirtualSource('raw_file_2.h5', 'data',
                         shape=(200, 2000,
                                2000))  #a representation of the input dataset
VSRC3 = h5.VirtualSource('raw_file_3.h5', 'data',
                         shape=(200, 2000,
                                2000))  #a representation of the input dataset
VSRC4 = h5.VirtualSource('raw_file_4.h5', 'data',
                         shape=(199, 2000,
                                2000))  #a representation of the input dataset
a = TGT[0:799:4, :, :]
b = TGT[1:799:4, :, :]
c = TGT[2:799:4, :, :]
d = TGT[3:799:4, :, :]
Пример #9
0
in_key = 'data'  # where is the data at the input?
in_sh = h5.File(raw_files[0], 'r')[in_key].shape  # get the input shape
dtype = h5.File(raw_files[0], 'r')[in_key].dtype  # get the datatype

outkey = 'full_frame'  # where should it go in the output file

# now generate the output shape
vertical_gap = 10  # pixels spacing in the vertical
nfiles = len(raw_files)
nframes = in_sh[0]
width = in_sh[2]
height = (in_sh[1] * nfiles) + (vertical_gap * (nfiles - 1))
out_sh = (nframes, height, width)

TGT = h5.VirtualTarget(
    outfile, outkey,
    shape=out_sh)  # Virtual target is a representation of the output dataset
offset = 0  # initial offset
VMlist = []  # place to put the maps
for i in range(nfiles):
    print("frame_number is: %s" % str(i))  # for feedback
    VSRC = h5.VirtualSource(
        raw_files[i], in_key,
        shape=in_sh)  #a representation of the input dataset
    VM = h5.VirtualMap(VSRC,
                       TGT[:, offset:(offset + in_sh[1]), :],
                       dtype=dtype)  # map them with indexing
    offset += in_sh[1] + vertical_gap  # increment the offset
    VMlist.append(VM)  # append it to the list

f.create_virtual_dataset(VMlist=VMlist,