Пример #1
0
def realize_and_check(f, checker, input, test_min_x, test_extent_x, test_min_y,
                      test_extent_y, vector_width, target):
    result = hl.Buffer(hl.UInt(8), [test_extent_x, test_extent_y])
    result.set_min([test_min_x, test_min_y])
    f2 = hl.lambda_func(x, y, f[x, y])
    schedule_test(f2, vector_width, target)
    f2.realize(result, target)
    result.copy_to_host()
    for r in range(test_min_y, test_min_y + test_extent_y):
        for c in range(test_min_x, test_min_x + test_extent_x):
            checker(input, result, c, r)
Пример #2
0
def get_interpolate(input, levels):
    """
    Build function, schedules it, and invokes jit compiler
    :return: halide.hl.Func
    """

    # THE ALGORITHM

    downsampled = [hl.Func('downsampled%d'%i) for i in range(levels)]
    downx = [hl.Func('downx%d'%l) for l in range(levels)]
    interpolated = [hl.Func('interpolated%d'%i) for i in range(levels)]
#     level_widths = [hl.Param(int_t,'level_widths%d'%i) for i in range(levels)]
#     level_heights = [hl.Param(int_t,'level_heights%d'%i) for i in range(levels)]
    upsampled = [hl.Func('upsampled%d'%l) for l in range(levels)]
    upsampledx = [hl.Func('upsampledx%d'%l) for l in range(levels)]
    x = hl.Var('x')
    y = hl.Var('y')
    c = hl.Var('c')

    clamped = hl.Func('clamped')
    clamped[x, y, c] = input[hl.clamp(x, 0, input.width()-1), hl.clamp(y, 0, input.height()-1), c]

    # This triggers a bug in llvm 3.3 (3.2 and trunk are fine), so we
    # rewrite it in a way that doesn't trigger the bug. The rewritten
    # form assumes the input alpha is zero or one.
    # downsampled[0][x, y, c] = hl.select(c < 3, clamped[x, y, c] * clamped[x, y, 3], clamped[x, y, 3])
    downsampled[0][x,y,c] = clamped[x, y, c] * clamped[x, y, 3]

    for l in range(1, levels):
        prev = hl.Func()
        prev = downsampled[l-1]

        if l == 4:
            # Also add a boundary condition at a middle pyramid level
            # to prevent the footprint of the downsamplings to extend
            # too far off the base image. Otherwise we look 512
            # pixels off each edge.
            w = input.width()/(1 << l)
            h = input.height()/(1 << l)
            prev = hl.lambda_func(x, y, c, prev[hl.clamp(x, 0, w), hl.clamp(y, 0, h), c])

        downx[l][x,y,c] = (prev[x*2-1,y,c] + 2.0 * prev[x*2,y,c] + prev[x*2+1,y,c]) * 0.25
        downsampled[l][x,y,c] = (downx[l][x,y*2-1,c] + 2.0 * downx[l][x,y*2,c] + downx[l][x,y*2+1,c]) * 0.25


    interpolated[levels-1][x,y,c] = downsampled[levels-1][x,y,c]
    for l in range(levels-1)[::-1]:
        upsampledx[l][x,y,c] = (interpolated[l+1][x/2, y, c] + interpolated[l+1][(x+1)/2, y, c]) / 2.0
        upsampled[l][x,y,c] = (upsampledx[l][x, y/2, c] + upsampledx[l][x, (y+1)/2, c]) / 2.0
        interpolated[l][x,y,c] = downsampled[l][x,y,c] + (1.0 - downsampled[l][x,y,3]) * upsampled[l][x,y,c]

    normalize = hl.Func('normalize')
    normalize[x,y,c] = interpolated[0][x, y, c] / interpolated[0][x, y, 3]

    final = hl.Func('final')
    final[x,y,c] = normalize[x,y,c]

    print("Finished function setup.")

    # THE SCHEDULE

    sched = 2
    target = hl.get_target_from_environment()
    if target.has_gpu_feature():
        sched = 4
    else:
        sched = 2

    if sched == 0:
        print ("Flat schedule.")
        for l in range(levels):
            downsampled[l].compute_root()
            interpolated[l].compute_root()

        final.compute_root()

    elif sched == 1:
        print("Flat schedule with vectorization.")
        for l in range(levels):
            downsampled[l].compute_root().vectorize(x, 4)
            interpolated[l].compute_root().vectorize(x, 4)

        final.compute_root()

    elif sched == 2:
        print("Flat schedule with parallelization + vectorization")
        xi, yi = hl.Var('xi'), hl.Var('yi')
        clamped.compute_root().parallel(y).bound(c, 0, 4).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
        for l in range(1, levels - 1):
            if l > 0:
                downsampled[l].compute_root().parallel(y).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
            interpolated[l].compute_root().parallel(y).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
            interpolated[l].unroll(x, 2).unroll(y, 2);

        final.reorder(c, x, y).bound(c, 0, 3).parallel(y)
        final.tile(x, y, xi, yi, 2, 2).unroll(xi).unroll(yi)
        final.bound(x, 0, input.width())
        final.bound(y, 0, input.height())

    elif sched == 3:
        print("Flat schedule with vectorization sometimes.")
        for l in range(levels):
            if l + 4 < levels:
                yo, yi = hl.Var('yo'), hl.Var('yi')
                downsampled[l].compute_root().vectorize(x, 4)
                interpolated[l].compute_root().vectorize(x, 4)
            else:
                downsampled[l].compute_root()
                interpolated[l].compute_root()

        final.compute_root();

    elif sched == 4:
        print("GPU schedule.")

        # Some gpus don't have enough memory to process the entire
        # image, so we process the image in tiles.
        yo, yi, xo, xi, ci = hl.Var('yo'), hl.Var('yi'), hl.Var('xo'), hl.Var("ci")
        final.reorder(c, x, y).bound(c, 0, 3).vectorize(x, 4)
        final.tile(x, y, xo, yo, xi, yi, input.width()/4, input.height()/4)
        normalize.compute_at(final, xo).reorder(c, x, y).gpu_tile(x, y, xi, yi, 16, 16, GPU_Default).unroll(c)

        # Start from level 1 to save memory - level zero will be computed on demand
        for l in range(1, levels):
            tile_size = 32 >> l;
            if tile_size < 1: tile_size = 1
            if tile_size > 16: tile_size = 16
            downsampled[l].compute_root().gpu_tile(x, y, c, xi, yi, ci, tile_size, tile_size, 4, GPU_Default)
            interpolated[l].compute_at(final, xo).gpu_tile(x, y, c, xi, yi, ci, tile_size, tile_size, 4, GPU_Default)

    else:
        print("No schedule with this number.")
        exit(1)

    # JIT compile the pipeline eagerly, so we don't interfere with timing
    final.compile_jit(target)

    return final
Пример #3
0
def get_interpolate(input, levels):
    """
    Build function, schedules it, and invokes jit compiler
    :return: halide.hl.Func
    """

    # THE ALGORITHM

    downsampled = [hl.Func('downsampled%d'%i) for i in range(levels)]
    downx = [hl.Func('downx%d'%l) for l in range(levels)]
    interpolated = [hl.Func('interpolated%d'%i) for i in range(levels)]
#     level_widths = [hl.Param(int_t,'level_widths%d'%i) for i in range(levels)]
#     level_heights = [hl.Param(int_t,'level_heights%d'%i) for i in range(levels)]
    upsampled = [hl.Func('upsampled%d'%l) for l in range(levels)]
    upsampledx = [hl.Func('upsampledx%d'%l) for l in range(levels)]
    x = hl.Var('x')
    y = hl.Var('y')
    c = hl.Var('c')

    clamped = hl.Func('clamped')
    clamped[x, y, c] = input[hl.clamp(x, 0, input.width()-1), hl.clamp(y, 0, input.height()-1), c]

    # This triggers a bug in llvm 3.3 (3.2 and trunk are fine), so we
    # rewrite it in a way that doesn't trigger the bug. The rewritten
    # form assumes the input alpha is zero or one.
    # downsampled[0][x, y, c] = hl.select(c < 3, clamped[x, y, c] * clamped[x, y, 3], clamped[x, y, 3])
    downsampled[0][x,y,c] = clamped[x, y, c] * clamped[x, y, 3]

    for l in range(1, levels):
        prev = hl.Func()
        prev = downsampled[l-1]

        if l == 4:
            # Also add a boundary condition at a middle pyramid level
            # to prevent the footprint of the downsamplings to extend
            # too far off the base image. Otherwise we look 512
            # pixels off each edge.
            w = input.width()/(1 << l)
            h = input.height()/(1 << l)
            prev = hl.lambda_func(x, y, c, prev[hl.clamp(x, 0, w), hl.clamp(y, 0, h), c])

        downx[l][x,y,c] = (prev[x*2-1,y,c] + 2.0 * prev[x*2,y,c] + prev[x*2+1,y,c]) * 0.25
        downsampled[l][x,y,c] = (downx[l][x,y*2-1,c] + 2.0 * downx[l][x,y*2,c] + downx[l][x,y*2+1,c]) * 0.25


    interpolated[levels-1][x,y,c] = downsampled[levels-1][x,y,c]
    for l in range(levels-1)[::-1]:
        upsampledx[l][x,y,c] = (interpolated[l+1][x/2, y, c] + interpolated[l+1][(x+1)/2, y, c]) / 2.0
        upsampled[l][x,y,c] = (upsampledx[l][x, y/2, c] + upsampledx[l][x, (y+1)/2, c]) / 2.0
        interpolated[l][x,y,c] = downsampled[l][x,y,c] + (1.0 - downsampled[l][x,y,3]) * upsampled[l][x,y,c]

    normalize = hl.Func('normalize')
    normalize[x,y,c] = interpolated[0][x, y, c] / interpolated[0][x, y, 3]

    final = hl.Func('final')
    final[x,y,c] = normalize[x,y,c]

    print("Finished function setup.")

    # THE SCHEDULE

    sched = 2
    target = hl.get_target_from_environment()
    if target.has_gpu_feature():
        sched = 4
    else:
        sched = 2

    if sched == 0:
        print ("Flat schedule.")
        for l in range(levels):
            downsampled[l].compute_root()
            interpolated[l].compute_root()

        final.compute_root()

    elif sched == 1:
        print("Flat schedule with vectorization.")
        for l in range(levels):
            downsampled[l].compute_root().vectorize(x, 4)
            interpolated[l].compute_root().vectorize(x, 4)

        final.compute_root()

    elif sched == 2:
        print("Flat schedule with parallelization + vectorization")
        xi, yi = hl.Var('xi'), hl.Var('yi')
        clamped.compute_root().parallel(y).bound(c, 0, 4).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
        for l in range(1, levels - 1):
            if l > 0:
                downsampled[l].compute_root().parallel(y).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
            interpolated[l].compute_root().parallel(y).reorder(c, x, y).reorder_storage(c, x, y).vectorize(c, 4)
            interpolated[l].unroll(x, 2).unroll(y, 2);

        final.reorder(c, x, y).bound(c, 0, 3).parallel(y)
        final.tile(x, y, xi, yi, 2, 2).unroll(xi).unroll(yi)
        final.bound(x, 0, input.width())
        final.bound(y, 0, input.height())

    elif sched == 3:
        print("Flat schedule with vectorization sometimes.")
        for l in range(levels):
            if l + 4 < levels:
                yo, yi = hl.Var('yo'), hl.Var('yi')
                downsampled[l].compute_root().vectorize(x, 4)
                interpolated[l].compute_root().vectorize(x, 4)
            else:
                downsampled[l].compute_root()
                interpolated[l].compute_root()

        final.compute_root();

    elif sched == 4:
        print("GPU schedule.")

        # Some gpus don't have enough memory to process the entire
        # image, so we process the image in tiles.
        yo, yi, xo, xi, ci = hl.Var('yo'), hl.Var('yi'), hl.Var('xo'), hl.Var("ci")
        final.reorder(c, x, y).bound(c, 0, 3).vectorize(x, 4)
        final.tile(x, y, xo, yo, xi, yi, input.width()/4, input.height()/4)
        normalize.compute_at(final, xo).reorder(c, x, y).gpu_tile(x, y, xi, yi, 16, 16, GPU_Default).unroll(c)

        # Start from level 1 to save memory - level zero will be computed on demand
        for l in range(1, levels):
            tile_size = 32 >> l;
            if tile_size < 1: tile_size = 1
            if tile_size > 16: tile_size = 16
            downsampled[l].compute_root().gpu_tile(x, y, c, xi, yi, ci, tile_size, tile_size, 4, GPU_Default)
            interpolated[l].compute_at(final, xo).gpu_tile(x, y, c, xi, yi, ci, tile_size, tile_size, 4, GPU_Default)

    else:
        print("No schedule with this number.")
        exit(1)

    # JIT compile the pipeline eagerly, so we don't interfere with timing
    final.compile_jit(target)

    return final