Пример #1
0
def _darknet(arch, num_layers=53, pretrained=False, **kwargs):
    model = DarkNet(num_layers, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(*(model_urls[arch]))
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
        model.load(weight_path)
    return model
Пример #2
0
def _resnet(arch, Block, depth, pretrained, **kwargs):
    model = ResNet(Block, depth, **kwargs)
    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
        assert weight_path.endswith(
            '.pdparams'), "suffix of weight must be .pdparams"
        model.load(weight_path)
    return model
Пример #3
0
def _tsm_resnet(num_layers, seg_num=8, num_classes=400, pretrained=True):
    model = TSM_ResNet(num_layers, seg_num, num_classes)
    if pretrained:
        assert num_layers in pretrain_infos.keys(), \
                "TSM-ResNet{} do not have pretrained weights now, " \
                "pretrained should be set as False".format(num_layers)
        weight_path = get_weights_path_from_url(*(pretrain_infos[num_layers]))
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
        model.load(weight_path)
    return model
Пример #4
0
def _yolov3_darknet(num_layers=53,
                    num_classes=80,
                    model_mode='train',
                    pretrained=True):
    model = YOLOv3(num_classes, model_mode)
    if pretrained:
        assert num_layers in pretrain_infos.keys(), \
                "YOLOv3-DarkNet{} do not have pretrained weights now, " \
                "pretrained should be set as False".format(num_layers)
        weight_path = get_weights_path_from_url(*(pretrain_infos[num_layers]))
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
        model.load(weight_path)
    return model
Пример #5
0
def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
    model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm),
                num_classes=1000,
                **kwargs)

    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
        assert weight_path.endswith(
            '.pdparams'), "suffix of weight must be .pdparams"
        model.load(weight_path)

    return model
Пример #6
0
def bmn(tscale,
        dscale,
        prop_boundary_ratio,
        num_sample,
        num_sample_perbin,
        pretrained=True):
    """BMN model
    
    Args:
        tscale (int): sequence length, default 100.
        dscale (int): max duration length, default 100.
        prop_boundary_ratio (float): ratio of expanded temporal region in proposal boundary, default 0.5. 
        num_sample (int): number of samples betweent starting boundary and ending boundary of each propoasl, default 32.
        num_sample_perbin (int):  number of selected points in each sample, default 3.
        pretrained (bool): If True, returns a model with pre-trained model, default True.
    """
    model = BMN(tscale, dscale, prop_boundary_ratio, num_sample,
                num_sample_perbin)
    if pretrained:
        weight_path = get_weights_path_from_url(*(pretrain_infos['bmn']))
        assert weight_path.endswith('.pdparams'), \
                "suffix of weight must be .pdparams"
        model.load(weight_path)
    return model