def main():
    # Be careful not to commit the csv files to the rep
    train_csv_path = "train.csv"
    eval_csv_path = "eval.csv"

    train_dataset = load_dataset('squad', split='train[0:499]')
    eval_dataset = load_dataset('squad', split='validation[0:99]')

    generate_csv(train_csv_path, train_dataset)
    generate_csv(eval_csv_path, eval_dataset)

    happy_qa = HappyQuestionAnswering(model_type="BERT", model_name="bert-base-uncased")
    before_loss = happy_qa.eval(eval_csv_path)
    happy_qa.train(train_csv_path)
    after_loss = happy_qa.eval(eval_csv_path)

    print("Before loss: ", before_loss.loss)
    print("After loss: ", after_loss.loss)
Пример #2
0
def test_qa_test():
    happy_qa = HappyQuestionAnswering()
    results = happy_qa.test("../data/qa/test.csv")
    assert results[0].answer == 'October 31st'
    assert results[1].answer == 'November 23rd'
Пример #3
0
def test_qa_eval():
    happy_qa = HappyQuestionAnswering(
        model_type='DISTILBERT',
        model_name='distilbert-base-cased-distilled-squad')
    result = happy_qa.eval("../data/qa/train-eval.csv")
    assert result.loss == approx(0.11738169193267822, 0.001)
Пример #4
0
def test_qa_train():
    happy_qa = HappyQuestionAnswering(
        model_type='DISTILBERT',
        model_name='distilbert-base-cased-distilled-squad')
    result = happy_qa.train("../data/qa/train-eval.csv")