Пример #1
0
 def test_cpp_extension(self):
     self.assertTrue((hashranking.hamming_rank([[1.0]],
                                               [[1.0]]) == [[0]]).all())
     self.assertTrue((hashranking.hamming_rank(
         [[1.0, -1.0, -1.0], [-1.0, 1.0, -1.0], [1.0, 1.0, -1.0]],
         [[1.0, -1.0, -1.0], [1.0, 1.0, -1.0], [-1.0, 1.0, -1.0]]) == [[
             0, 1, 2
         ], [2, 1, 0], [1, 0, 2]]).all())
Пример #2
0
    def test_on_random_64(self):
        b1 = np.random.rand(200, 64).astype(np.float32) - 0.5
        b2 = np.random.rand(500, 64).astype(np.float32) - 0.5
        d1 = hashranking.hamming_rank(b1, b2)
        d2 = hashranking.numpy_implementation.hamming_rank(b1, b2)

        self.assertTrue((d1 == d2).all())
Пример #3
0
    def test_map_from_rank(self):
        db_size = 1000
        query_size = 200
        class_count = 10
        hash_size = 24
        top_n = 50

        db = np.random.randint(class_count, size=db_size, dtype=np.uint32)
        query = np.random.randint(class_count,
                                  size=query_size,
                                  dtype=np.uint32)

        hashes_class = np.random.rand(class_count, hash_size).astype(
            np.float32) - 0.5

        hashes_db = hashes_class[db] + 0.3 * np.random.randn(
            db_size, hash_size).astype(np.float32)
        hashes_query = hashes_class[query] + 0.3 * np.random.randn(
            query_size, hash_size).astype(np.float32)

        s = hashranking.numpy_implementation._compute_similarity(db, query)

        rank = hashranking.numpy_implementation.hamming_rank(
            hashes_query, hashes_db)
        mAP_py, p, r = hashranking.numpy_implementation.compute_map_from_rank(
            rank, s, top_n)

        rank = hashranking.hamming_rank(hashes_query, hashes_db)
        mAP_cpp, p, r = hashranking.compute_map_from_rank(rank, s, top_n)

        self.assertEqual(mAP_py, mAP_cpp)