def load_data(): data = hasy_tools.load_data() # One-Hot encoding data['y_train'] = np.eye(hasy_tools.n_classes)[data['y_train'].squeeze()] data['y_test'] = np.eye(hasy_tools.n_classes)[data['y_test'].squeeze()] # Preprocessing data['x_train'] = hasy_tools.preprocess(data['x_train']) data['x_test'] = hasy_tools.preprocess(data['x_test']) return data
def get_prediction(self, input_img): input_img = np.array(input_img) input_img = input_img.reshape(1, 32, 32, 1) prediction = self.model.predict(hasy_tools.preprocess(input_img)) highest_prob_index = prediction.argmax() proba = prediction[0][highest_prob_index] label = self.labels[highest_prob_index] print('{}: {:0.2f}%'.format(label, proba * 100)) return label
data = hasy_tools.load_data() x_train = data["x_train"] y_train = data["y_train"] x_validate = data["x_train"] y_validate = data["y_train"] x_test = data["x_test"] y_test = data["y_test"] # One-Hot encoding y_train = np.eye(hasy_tools.n_classes)[y_train.squeeze()] y_validate = np.eye(hasy_tools.n_classes)[y_validate.squeeze()] y_test = np.eye(hasy_tools.n_classes)[y_test.squeeze()] # Preprocessing x_train = hasy_tools.preprocess(x_train) x_validate = hasy_tools.preprocess(x_validate) x_test = hasy_tools.preprocess(x_test) # Define the model model = Sequential() model.add(Flatten()) model.add(Dense(256, activation="tanh")) model.add(Dropout(0.25)) # Drop 25% of the units model.add(Dense(256, activation="tanh")) model.add(Dense(hasy_tools.n_classes, activation="softmax")) # Compile model model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
data = hasy_tools.load_data() x_train = data['x_train'] y_train = data['y_train'] x_validate = data['x_train'] y_validate = data['y_train'] x_test = data['x_test'] y_test = data['y_test'] # One-Hot encoding y_train = np.eye(hasy_tools.n_classes)[y_train.squeeze()] y_validate = np.eye(hasy_tools.n_classes)[y_validate.squeeze()] y_test = np.eye(hasy_tools.n_classes)[y_test.squeeze()] # Preprocessing x_train = hasy_tools.preprocess(x_train) x_validate = hasy_tools.preprocess(x_validate) x_test = hasy_tools.preprocess(x_test) # Load the model model = keras.models.load_model('checkpoint.h5') # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Visualize the model print(model.summary()) # Evaluate the model
import hasy_tools # Load the data data = hasy_tools.load_data() x_train = data['x_train'] y_train = data['y_train'] x_test = data['x_test'] y_test = data['y_test'] # One-Hot encoding y_train = np.eye(hasy_tools.n_classes)[y_train.squeeze()] y_test = np.eye(hasy_tools.n_classes)[y_test.squeeze()] # Preprocessing x_train = hasy_tools.preprocess(x_train) x_test = hasy_tools.preprocess(x_test) # Define the model model = Sequential() model.add(Flatten()) model.add(Dense(256, activation='tanh')) model.add(Dense(256, activation='tanh')) model.add(Dense(hasy_tools.n_classes, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model
import hasy_tools # Load the data data = hasy_tools.load_data() x_train = data['x_train'] y_train = data['y_train'] x_test = data['x_test'] y_test = data['y_test'] # One-Hot encoding y_train = np.eye(hasy_tools.n_classes)[y_train.squeeze()] y_test = np.eye(hasy_tools.n_classes)[y_test.squeeze()] # Preprocessing x_train = hasy_tools.preprocess(x_train) x_test = hasy_tools.preprocess(x_test) # Define the model model = Sequential() model.add(Flatten()) model.add(Dense(256)) model.add(Dense(hasy_tools.n_classes, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model csv_logger = CSVLogger('log.csv', append=True, separator=';')
# Load data fold = 1 hasy_data = ht.load_data(mode='fold-{}'.format(fold), image_dim_ordering='tf') x_train = hasy_data['x_train'] y_train = hasy_data['y_train'] x_test = hasy_data['x_test'] y_test = hasy_data['y_test'] # One-Hot encoding y_train = np.eye(ht.n_classes)[y_train.squeeze()] y_test = np.eye(ht.n_classes)[y_test.squeeze()] # Preprocessing x_train = ht.preprocess(x_train) x_test = ht.preprocess(x_test) # Define model model = Sequential() model.add( Convolution2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:])) model.add(PReLU()) model.add(Convolution2D(64, (3, 3), padding='same')) model.add(PReLU()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1024, activation='tanh')) model.add(Dropout(0.5))
# internal modules import hasy_tools # Load the data data = hasy_tools.load_data() datasets = ['train', 'test'] # One-Hot encoding for dataset in datasets: key = 'y_' + dataset data[key] = np.eye(hasy_tools.n_classes)[data[key].squeeze()] # Preprocessing for dataset in datasets: key = 'x_' + dataset data[key] = hasy_tools.preprocess(data[key]) # Generate Validation Data split = train_test_split(data['x_train'], data['y_train'], test_size=0.20, random_state=0, stratify=data['y_train']) data['x_train'], data['x_val'], data['y_train'], data['y_val'] = split datasets.append('val') def skip_layer_conv(x, nb_layers=16): x1 = Conv2D(nb_layers, (3, 3), padding='same')(x) x1 = Activation('relu')(x1) x2 = Conv2D(nb_layers, (3, 3), padding='same')(x1) x2 = Activation('relu')(x2)
from keras.regularizers import l1 from sklearn.model_selection import train_test_split # Load the data data = hasy_tools.load_data() datasets = ['train', 'test'] # One-Hot encoding for dataset in datasets: key = 'y_' + dataset data[key] = np.eye(hasy_tools.n_classes)[data[key].squeeze()] # Preprocessing for dataset in datasets: key = 'x_' + dataset data[key] = hasy_tools.preprocess(data[key]) # Generate Validation Data split = train_test_split(data['x_train'], data['y_train'], test_size=0.20, random_state=0, stratify=data['y_train']) data['x_train'], data['x_val'], data['y_train'], data['y_val'] = split datasets.append('val') def skip_layer_conv(x, nb_layers=16): x1 = Conv2D(nb_layers, (3, 3), padding='same')(x) x1 = Activation('relu')(x1) x2 = Conv2D(nb_layers, (3, 3), padding='same')(x1)
import hasy_tools import numpy as np from keras.callbacks import CSVLogger, ModelCheckpoint from keras.layers import Activation, Dense, Flatten from keras.models import Sequential # data loading data = hasy_tools.load_data() data['x_train'] = hasy_tools.preprocess(data['x_train']) data['y_train'] = np.eye(369)[data['y_train']] # data['x_test'] = hasy_tools.preprocess(data['x_train']) # data['y_test'] = np.eye(369)[data['y_train']] # model model = Sequential() model.add(Flatten()) model.add(Dense(254)) model.add(Activation('relu')) model.add(Dense(369)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # fit model.fit(data['x_train'], data['y_train'].squeeze(), epochs=10) # save model.save('model.h5')
import hasy_tools import numpy as np from keras.callbacks import CSVLogger, ModelCheckpoint from keras.layers import Dense, Flatten, Activation from keras.models import Sequential # data loading data = hasy_tools.load_data() data['x_train'] = hasy_tools.preprocess(data['x_train']) data['y_train'] = np.eye(369)[data['y_train']] # data['x_test'] = hasy_tools.preprocess(data['x_train']) # data['y_test'] = np.eye(369)[data['y_train']] # model model = Sequential() model.add(Flatten()) model.add(Dense(254)) model.add(Activation('relu')) model.add(Dense(369)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # fit model.fit(data['x_train'], data['y_train'].squeeze(), epochs=10) # save model.save('model.h5')