def test_halfnull_halfequal_notrespected1(self): data = pd.DataFrame() c1 = [chr(1) for _ in range(50)] c2 = [2 for _ in range(50)] c3 = [2 / 0.6 for _ in range(50)] c1.extend(["" for _ in range(50)]) c2.extend([0 for _ in range(50)]) c3.extend([0. for _ in range(40)]) c3.extend([10. for _ in range(10)]) data["c1"] = c1 data["c2"] = c2 data["c3"] = c3 df = self.spark.createDataFrame(data) df = df.withColumn("c1", replace_empty_with_null(df["c1"])) df = df.withColumn("c2", replace_0_with_null(df["c2"])) r = constraint([0, 1], [2], df=df)[0] self.assertEqual(r, 50.0) condition1 = {"column": "c2", "operator": "lt", "value": 3} condition2 = {"column": "c2", "operator": "gt", "value": 0} conditions = [condition1, condition2] r = constraint([0, 1], [2], conditions, df)[0] self.assertEqual(r, 100.0) r = constraint([0, 2], [1], conditions, df)[0] self.assertEqual(r, 100.0)
def test_allnull(self): data = pd.DataFrame() data["c1"] = [" " for _ in range(100)] data["c2"] = [1 for _ in range(100)] data["c3"] = [1 for _ in range(100)] df = self.spark.createDataFrame(data) df = df.withColumn("c1", replace_every_string_with_null(df["c1"])) df = df.withColumn("c2", replace_every_int_with_null(df["c2"])) r = constraint([0, 1], [2], df=df)[0] self.assertEqual(r, 100.0)
def test_empty(self): data = pd.DataFrame() data["c1"] = [] data["c2"] = [] schema = [StructField("c1", IntegerType(), True), StructField("c2", StringType(), True)] df = self.spark.createDataFrame(data, StructType(schema)) condition1 = {"column": "c1", "operator": "lt", "value": 1000} condition2 = {"column": "c1", "operator": "gt", "value": 0} conditions = [condition1, condition2] r = constraint([0], [1], conditions, df)[0] self.assertEqual(r, 100.)
def test_allnull_with_conditions(self): data = pd.DataFrame() data["c1"] = [" " for _ in range(100)] data["c2"] = [1 for _ in range(100)] data["c3"] = [1 for _ in range(100)] df = self.spark.createDataFrame(data) df = df.withColumn("c1", replace_every_string_with_null(df["c1"])) df = df.withColumn("c2", replace_every_int_with_null(df["c2"])) condition1 = {"column": "c1", "operator": "lt", "value": 1000} condition2 = {"column": "c1", "operator": "gt", "value": 0} conditions = [condition1, condition2] r = constraint([0, 1], [2], conditions, df)[0] self.assertEqual(r, 100.0)
def test_halfnull_halfequal_notrespected3(self): data = pd.DataFrame() c1 = ["", "2", "2", "3", "3", "3", ""] c2 = [0, 2, 2, 3, 3, 0, 3] c3 = [24., 4, 4, 4, 2, 24, 2] data["c1"] = c1 data["c2"] = c2 data["c3"] = c3 df = self.spark.createDataFrame(data) df = df.withColumn("c1", replace_empty_with_null(df["c1"])) df = df.withColumn("c2", replace_0_with_null(df["c2"])) df = df.withColumn("c3", replace_0dot_with_null(df["c3"])) r = constraint([0, 1], [2], df=df)[0] self.assertEqual(r, (5 / 7.) * 100) condition1 = {"column": "c2", "operator": "lt", "value": 3} conditions = [condition1] r = constraint([0, 1], [2], conditions, df)[0] self.assertEqual(r, 100.) condition1 = {"column": "c2", "operator": "eq", "value": 3} conditions = [condition1] r = constraint([0, 1], [2], conditions, df)[0] self.assertEqual(r, (1 / 3.) * 100) condition1 = {"column": "c2", "operator": "eq", "value": 3} condition2 = {"column": "c1", "operator": "eq", "value": "3"} conditions = [condition1, condition2] r = constraint([0, 1], [2], conditions, df)[0] self.assertEqual(r, 0.) condition1 = {"column": "c3", "operator": "gt", "value": 20} condition2 = {"column": "c2", "operator": "lt", "value": 3} condition3 = {"column": "c1", "operator": "eq", "value": "3"} conditions = [condition1, condition2, condition3] r = constraint([0, 1], [2], conditions, df)[0] self.assertEqual(r, 100.) r = constraint([0], [1, 2], df=df)[0] self.assertEqual(r, (2 / 7.) * 100)
#!/usr/bin/python3 from pyspark.sql import SparkSession from haychecker.dhc.metrics import constraint spark = SparkSession.builder.appName("constraint_example").getOrCreate() df = spark.read.format("csv").option( "header", "true").load("examples/resources/employees.csv") df.show() r1 = constraint(["title"], ["salary"], df=df)[0] print("Constraint title/salary: {}".format(r1)) task1 = constraint(["city"], ["region"]) task2 = constraint(["region"], ["city"]) task3 = task1.add(task2) result = task3.run(df) r1 = result[0]["scores"][0] r2 = result[1]["scores"][0] print("Constraint city/region: {}, сonstraint region/city: {}".format(r1, r2))