Пример #1
0
def adaptive_resample(x, t = None, max_err = np.inf, max_dx = np.inf, max_dt = np.inf, normfunc = None):
    """
    SLOW VERSION
    """
    #return np.arange(0, len(x), 100)
    LOG.info("resampling a path of length %i", len(x))
    x = np.asarray(x)
    
    if x.ndim == 1: x = x[:,None]
    else: assert x.ndim == 2
    
    if normfunc is None: normfunc = np.linalg.norm
    
    if t is None: t = np.arange(len(x))
    else: t = np.asarray(t)
    assert(t.ndim == 1)
    
    n = len(t)
    assert len(x) == n

    import networkx as nx
    g = nx.DiGraph()
    g.add_nodes_from(xrange(n))
    for i_src in xrange(n):
        for i_targ in xrange(i_src+1, n):
            normdx = normfunc(x[i_targ] - x[i_src])
            dt = t[i_targ] - t[i_src]
            errs = lerp(x[i_src], x[i_targ], (t[i_src:i_targ+1] - t[i_src])/dt) - x[i_src:i_targ+1]
            interp_err = errs.__abs__().max()#np.array([normfunc(err) for err in errs]).max()
            if normdx > max_dx or dt > max_dt or interp_err > max_err: break
            g.add_edge(i_src, i_targ)
    resample_inds = nx.shortest_path(g, 0, n-1)
    return resample_inds
def make_joint_traj(xyzs, quats, manip, ref_frame, targ_frame, filter_options = 0):
    "do ik and then fill in the points where ik failed"

    n = len(xyzs)
    assert len(quats) == n
    
    robot = manip.GetRobot()
    joint_inds = manip.GetArmIndices()
    robot.SetActiveDOFs(joint_inds)
    orig_joint = robot.GetActiveDOFValues()
    
    joints = []
    inds = []

    for i in xrange(0,n):
        mat4 = conv.trans_rot_to_hmat(xyzs[i], quats[i])
        joint = PR2.cart_to_joint(manip, mat4, ref_frame, targ_frame, filter_options)
        if joint is not None: 
            joints.append(joint)
            inds.append(i)
            robot.SetActiveDOFValues(joint)


    robot.SetActiveDOFValues(orig_joint)
    
    
    LOG.info("found ik soln for %i of %i points",len(inds), n)
    if len(inds) > 2:
        joints2 = mu.interp2d(np.arange(n), inds, joints)
        return joints2, inds
    else:
        return np.zeros((n, len(joints))), []
Пример #3
0
def adaptive_resample(x,
                      t=None,
                      max_err=np.inf,
                      max_dx=np.inf,
                      max_dt=np.inf,
                      normfunc=None):
    """
    SLOW VERSION
    """
    #return np.arange(0, len(x), 100)
    LOG.info("resampling a path of length %i", len(x))
    x = np.asarray(x)

    if x.ndim == 1: x = x[:, None]
    else: assert x.ndim == 2

    if normfunc is None: normfunc = np.linalg.norm

    if t is None: t = np.arange(len(x))
    else: t = np.asarray(t)
    assert (t.ndim == 1)

    n = len(t)
    assert len(x) == n

    import networkx as nx
    g = nx.DiGraph()
    g.add_nodes_from(xrange(n))
    for i_src in xrange(n):
        for i_targ in xrange(i_src + 1, n):
            normdx = normfunc(x[i_targ] - x[i_src])
            dt = t[i_targ] - t[i_src]
            errs = lerp(
                x[i_src], x[i_targ],
                (t[i_src:i_targ + 1] - t[i_src]) / dt) - x[i_src:i_targ + 1]
            interp_err = errs.__abs__().max(
            )  #np.array([normfunc(err) for err in errs]).max()
            if normdx > max_dx or dt > max_dt or interp_err > max_err: break
            g.add_edge(i_src, i_targ)
    resample_inds = nx.shortest_path(g, 0, n - 1)
    return resample_inds
def follow_body_traj(pr2, bodypart2traj, wait=True, base_frame = "/base_footprint", speed_factor=1):    

    LOG.info("following trajectory with bodyparts %s", " ".join(bodypart2traj.keys()))
    
    name2part = {"lgrip":pr2.lgrip, 
                 "rgrip":pr2.rgrip, 
                 "larm":pr2.larm, 
                 "rarm":pr2.rarm,
                 "base":pr2.base}
    for partname in bodypart2traj:
        if partname not in name2part:
            raise Exception("invalid part name %s"%partname)
            
            
    #### Go to initial positions #######
            
            
    for (name, part) in name2part.items():
        if name in bodypart2traj:
            part_traj = bodypart2traj[name]        
            if name == "lgrip" or name == "rgrip":
                part.set_angle(np.squeeze(part_traj)[0])
            elif name == "larm" or name == "rarm":
                part.goto_joint_positions(part_traj[0])
            elif name == "base":
                part.goto_pose(part_traj[0], base_frame)          
    pr2.join_all()  


    #### Construct total trajectory so we can retime it #######

            
    n_dof = 0            
    trajectories = []
    vel_limits = []
    acc_limits = []
    bodypart2inds = {}
    for (name, part) in name2part.items():
        if name in bodypart2traj:
            traj = bodypart2traj[name]
            if traj.ndim == 1: traj = traj.reshape(-1,1)
            trajectories.append(traj)
            vel_limits.extend(part.vel_limits)
            acc_limits.extend(part.acc_limits)
            bodypart2inds[name] = range(n_dof, n_dof+part.n_joints)
            n_dof += part.n_joints
                        
    trajectories = np.concatenate(trajectories, 1)    
    
    vel_limits = np.array(vel_limits)*speed_factor
    

    times = retiming.retime_with_vel_limits(trajectories, vel_limits)
    times_up = np.linspace(0, times[-1], int(np.ceil(times[-1]/.1)))
    traj_up = mu.interp2d(times_up, times, trajectories)
    
    
    #### Send all part trajectories ###########
    
    for (name, part) in name2part.items():
        if name in bodypart2traj:
            part_traj = traj_up[:,bodypart2inds[name]]
            if name == "lgrip" or name == "rgrip":
                part.follow_timed_trajectory(times_up, part_traj.flatten())
            elif name == "larm" or name == "rarm":
                vels = resampling.get_velocities(part_traj, times_up, .001)
                part.follow_timed_joint_trajectory(part_traj, vels, times_up)
            elif name == "base":
                part.follow_timed_trajectory(times_up, part_traj, base_frame)
                
    if wait: pr2.join_all()    
    
    return True