Пример #1
0
    def upload(name, file_path, config):
        env_prefix = config.get("prefix", None)
        hdfs_client = Client(url=config["hdfs"]["name_node"])
        hdfs_hosts = []
        hdfs_http_host = config["hdfs"]["name_node"]
        hdfs_hosts.append(hdfs_http_host.replace("http://", ""))
        hdfs_data_service_root = "/data_service"
        if env_prefix is not None:
            hdfs_data_service_root = "/{0}_data_service".format(env_prefix)

        hdfs_client.makedirs(hdfs_data_service_root)
        timestamp = int(round(time.time() * 1000))
        target_file_name = "{2}/{0}/{1}/{0}_{1}.py".format(
            name, str(timestamp), hdfs_data_service_root)
        hdfs_client.makedirs("{2}/{0}/{1}".format(name, str(timestamp),
                                                  hdfs_data_service_root))
        print("hdfs file name: {0}".format(target_file_name))
        hdfs_client.upload(target_file_name, file_path)
        zip_path = os.path.join(
            os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
            "joowing.zip")
        target_zp_file_name = "{2}/{0}/{1}/joowing.zip".format(
            name, str(timestamp), hdfs_data_service_root)
        # hdfs_client.upload(target_zp_file_name, zip_path)
        # return target_file_name, target_zp_file_name
        return target_file_name
Пример #2
0
def main():
    client = Client("http://127.0.0.1:50070",
                    root="/",
                    timeout=100,
                    session=False)
    #client.makedirs("/news")
    client.upload("/input", "x.html")
    print(client.list("/"))
Пример #3
0
def save_to_storage(filename, sha1):
    if args.no_save:
        return False
    from hdfs import Client

    client = Client('http://{}:50070'.format(config.get("hdfs", "host")), root=config.get("reportparser", "storage"))
    uploaded = client.upload(sha1, filename, overwrite=True)
    return uploaded
Пример #4
0
    def get(self, request, *args, **kwargs):
        table_name = request.data.get('name')
        username = request.session['username']
        password = request.session['password']
        host = request.session['host']
        port = request.session['port']
        database_name = request.session['dbdatabase_name']
        obj = DataSource.objects
        conn = pymssql.connect(database=database_name, user=username, password=password, host=host, port=port)
        client = Client(HDFS_HOST)
        cur = conn.cursor()
        for i in table_name:
            global rels
            cur.execute("select name from syscolumns where id = object_id('%s');" % (i))
            rels = []
            rel = []
            rows = cur.fetchall()
            for i in rows:
                for item in i:
                    rel.append(item)
            rels.append(rel)
            # 类似于其他语言的 query 函数, execute 是 python 中的执行查询函数
            cur.execute("SELECT * FROM  %s" % (i))
            # 使用 fetchall 函数,将结果集(多维元组)存入 rows 里面
            rows1 = cur.fetchall()
            # 依次遍历结果集,发现每个元素,就是表中的一条记录,用一个元组来显示
            for row in rows1:
                rels.append(list(row))
            file_name = i + '.sql'
            format_name = uuid.uuid1()
            filepath = settings.MEDIA_ROOT + format_name
            with open(filepath, 'wb+') as writer:
                for chunk in rels:
                    writer.write(chunk)

            client.upload("/datahoop", filepath)
            obj.create(file_name=file_name, format_name=format_name, user_id=1)
            os.remove(filepath)
        client.close()
        cur.close()
        conn.close()

        return HttpResponse(json.dumps(rels), content_type='application/json')
Пример #5
0
    def get(self, request, *args, **kwargs):
        # table_name = request.data.get('name')
        table_name = 'files_datasource'
        username = request.session['username']
        password = request.session['password']
        host = request.session['host']
        port = request.session['port']
        database_name = request.session['database_name']
        obj = DataSource.objects
        con = pymysql.connect(host, username, password, database_name)
        client = Client(HDFS_HOST)
        cur = con.cursor()
        # for i in table_name:
        sql = "select DISTINCT (COLUMN_NAME) from information_schema.COLUMNS where table_name = '%s'"
        cur.execute(sql % (table_name))
        rows = cur.fetchall()
        rels = []
        rel = []
        for i in rows:
            rel.append(i[0])
        rels.append(rel)  # 类似于其他语言的 query 函数, execute 是 python 中的执行查询函数
        cur.execute("SELECT * FROM  %s" % (table_name))  # 使用 fetchall 函数,将结果集(多维元组)存入 rows 里面
        rows = cur.fetchall()  # 依次遍历结果集,发现每个元素,就是表中的一条记录,用一个元组来显示
        for row in rows:
            rels.append(list(row))
        file_name = table_name + '.sql'
        format_name = uuid.uuid1()
        filepath = settings.MEDIA_ROOT + str(format_name)
        with open(filepath, 'wb+') as writer:
            for chunk in rels:
                writer.write(chunk)

        client.upload("/datahoop", filepath)
        obj.create(file_name=file_name, format_name=format_name, user_id=1)
        os.remove(filepath)
        client.close()
        con.close()
        cur.close()

        return HttpResponse(json.dumps(rels), content_type='application/json')
Пример #6
0
#daoru
from hdfs import Client

client = Client("http://master:9870")
# client.makedirs("/abc/xyz")
x = client.list("/")
y = client.list("/", status=True)
print(y[1][0])
print(y[1][1]["accessTime"])

client.upload("/abc", "HDFSDao.py")
client.download("/abc/HDFSDao.py", "d:/ttt.py")

print("end___")
Пример #7
0
def train(train_path,
          test_path,
          output_path,
          target,
          train_split_ratio=0.33,
          penalty='l2',
          dual=False,
          tol=1e-4,
          C=1.0,
          random_state=None,
          multi_class='ovr'):
    # 设置起始时间
    time.localtime()
    time_trains_start = time.strftime('%Y{y}%m{m}%d{d} %H{h}%M{f}%S{s}'.format(
        y='/', m='/', d='', h=':', f=':', s=''))
    start_time = time.time()

    # 设置输入文件路径
    train_FILENAME = train_path + "/data/Data.csv"  # hdfs文件路径
    test_FILENAME = test_path + "/data/Data.csv"  # hdfs文件路径
    client = Client(HDFS_HOSTS1)
    # 训练数据读取
    with client.read(train_FILENAME) as tr_s:
        tr_content = tr_s.read()
        tr_s = str(tr_content, 'utf-8')
    # 确保文件写入完毕
    tr_file = open("trainData.csv", "w")
    tr_file.flush()
    os.fsync(tr_file)
    tr_file.write(tr_s)
    tr_file.close()
    df_train = pd.read_csv("trainData.csv", header=0)
    print(df_train)

    # 测试数据读取
    with client.read(test_FILENAME) as te_fs:
        te_content = te_fs.read()
        te_s = str(te_content, 'utf-8')
    # 确保文件写入完毕
    te_file = open("testData.csv", "w")
    te_file.flush()
    os.fsync(te_file)
    te_file.write(te_s)
    te_file.close()
    df_test = pd.read_csv("testData.csv", header=0)
    print(df_test)

    min_max_scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1))
    test_data_num = df_train.shape[0]
    train_data_num = df_train.shape[0]

    # 处理预测集
    df_test = min_max_scaler.fit_transform(df_test)
    df_test = np.array(df_test)

    # 数据处理和清洗
    cols = [tmp_i for tmp_i in df_train.columns if tmp_i not in [target]]
    X = df_train[cols]

    X = np.array(X)
    X = min_max_scaler.fit_transform(X)
    Y = df_train[target]
    Y = np.array(Y)

    # 训练集数据分割
    X_train, X_test, Y_train, Y_test = train_test_split(
        X, Y, test_size=train_split_ratio)

    # 使用 scikit learn 中的LR模型进行训练
    clf = LogisticRegression(penalty,
                             dual,
                             tol,
                             C,
                             random_state,
                             multi_class,
                             solver='liblinear')
    clf.fit(X_train, Y_train)

    # 准确率train_acc
    train_acc = clf.score(X_test, Y_test)
    print('score Scikit learn: ', train_acc)
    # 精确率train_precision_score
    train_precision_score = precision_score(Y_test, clf.predict(X_test))
    # 召回率train_recall_score
    train_recall_score = recall_score(Y_test, clf.predict(X_test))
    # F1_Score
    train_f1_score = f1_score(Y_test, clf.predict(X_test))
    # roc_auc_score
    train_roc_auc_score1 = roc_auc_score(Y_test, clf.predict(X_test))

    # 使用 scikit learn 中的LR模型进行预测
    result = clf.predict(df_test)
    # print(result)

    # 设置终止时间,并计算总时间
    train_end = time.time()
    train_seconds = train_end - start_time
    m, s = divmod(train_seconds, 60)
    h, m = divmod(m, 60)
    time_trains_all = "%02d:%02d:%02d" % (h, m, s)

    # ++++++++++++++++++++++++++++++++++++++++训练结果保存+++++++++++++++++++++++++++++++++++++++#
    ## 保存摘要模型报告文件
    # abstract_path = HDFS_HOSTS1 + output_path + '/abstract/data/'
    abstract_path = output_path + '/abstract/data/'
    f = open('abstract.csv', mode='w', newline='')
    fileheader = [
        'FrameWork', 'Version', 'model', 'accuracy', 'time_trains_start',
        'time_trains_all', 'test_data_num', 'train_data_num'
    ]
    w = csv.DictWriter(f, fileheader)
    w.writeheader()
    csv_dict = edict()
    csv_dict.FrameWork = 'Scikit-learn'
    csv_dict.Version = sklearn.__version__
    csv_dict.model = '%s' % LogisticRegression
    csv_dict.accuracy = str(train_acc)
    csv_dict.time_trains_start = time_trains_start
    csv_dict.time_trains_all = time_trains_all
    csv_dict.test_data_num = str(test_data_num)
    csv_dict.train_data_num = str(train_data_num)
    w.writerow(csv_dict)
    f.close()
    client.delete(abstract_path + 'abstract.csv')
    client.upload(abstract_path + 'abstract.csv', 'abstract.csv')
    # if len(client.list(abstract_path)):
    # 	client.delete(abstract_path + 'abstract.csv')
    # 	client.upload(abstract_path + 'abstract.csv', 'abstract.csv')
    # else:
    # 	client.upload(abstract_path + 'abstract.csv', 'abstract.csv')

    ##保存模型版本信息csv文件
    version_path = output_path + '/msg/data/'
    f = open('msg.csv', mode='w', newline='')
    fileheader = [
        'accuracy', 'time_trains_start', 'time_trains_all', 'test_data_num',
        'train_data_num'
    ]
    w = csv.DictWriter(f, fileheader)
    w.writeheader()
    csv_dict = edict()
    csv_dict.accuracy = str(train_acc)
    csv_dict.time_trains_start = time_trains_start
    csv_dict.time_trains_all = time_trains_all
    csv_dict.test_data_num = str(test_data_num)
    csv_dict.train_data_num = str(train_data_num)
    w.writerow(csv_dict)
    f.close()
    client.delete(version_path + 'msg.csv')
    client.upload(version_path + 'msg.csv', 'msg.csv')

    ## 保存训练评价指标模型报告文件
    file_csv_path = output_path + '/evaluation/data/'
    f = open('evaluation.csv', mode='w', newline='')
    fileheader = [
        'accuracy', 'train_precision_score', 'train_recall_score',
        'train_f1_score', 'train_roc_auc_score1'
    ]
    w = csv.DictWriter(f, fileheader)
    w.writeheader()
    csv_dict = edict()
    csv_dict.accuracy = str(train_acc)
    csv_dict.train_precision_score = train_precision_score
    csv_dict.train_recall_score = train_recall_score
    csv_dict.train_f1_score = train_f1_score
    csv_dict.train_roc_auc_score1 = train_roc_auc_score1
    w.writerow(csv_dict)
    f.close()
    client.delete(file_csv_path + 'evaluation.csv')
    client.upload(file_csv_path + 'evaluation.csv', 'evaluation.csv')

    # 保存测试集预测结果文件
    file_csv_path = output_path + '/result/data/'

    # 字典中的key值即为csv中列名
    dataframe = pd.DataFrame({target: result})
    # 将DataFrame存储为csv,index表示是否显示行名,default=True
    dataframe.to_csv("result.csv", index=False, sep=',')

    client.delete(file_csv_path + 'result.csv')
    client.upload(file_csv_path + 'result.csv', 'result.csv')
Пример #8
0
class HDFSUtil:
    def __init__(self, url):
        self._client = Client(url)

    def make_dir(self, hdfs_path):
        """
        支持递归创建多级目录
        :param hdfs_path:
        :return:
        """
        self._client.makedirs(hdfs_path)

    def delete_hdfs_file(self, hdfs_path):
        """
        删除HDFS文件

        如果是目录, 必须为空
        :param hdfs_path:
        :return:
        """
        self._client.delete(hdfs_path)

    def delete_hdfs_dir(self, hdfs_dir):
        """
        删除HDFS文件/目录

        如果目录不为空, 递归删除
        :param hdfs_dir:
        :return:
        """
        dir_list = self.hdfs_dir_list(hdfs_dir)
        if dir_list is None or len(dir_list) == 0:
            print('Delete File: {0}'.format(hdfs_dir))
            self._client.delete(hdfs_dir)
        else:
            for file_name in dir_list:
                self.delete_hdfs_dir(hdfs_dir + '/' + file_name)
            print('Delete Dir: {0}'.format(hdfs_dir))
            self._client.delete(hdfs_dir)

    def upload_to_hdfs(self, local_path, hdfs_path):
        """
        将本地文件/目录上传到HDFS上

        如果目录不存在, 会自动创建
        :param local_path:
        :param hdfs_path:
        :return:
        """
        self._client.upload(hdfs_path, local_path, cleanup=True)

    def download_from_hdfs(self, hdfs_path, local_path):
        """
        将HDFS上的文件/目录下载到本地
        :param hdfs_path:
        :param local_path:
        :return:
        """
        self._client.download(hdfs_path, local_path, overwrite=True)

    def write_to_hdfs(self, hdfs_path, data, overwrite=False, append=True):
        """
        追加: overwrite=false, append=true => Default
        复写: overwrite=true, append=false

        overwrite和append逻辑必须互斥
        :param hdfs_path:
        :param data:
        :param overwrite: Boolean 是否复写
        :param append: Boolean 是否追加
        :return:
        """
        if not self._client.content(hdfs_path, strict=False):
            print('File Not exist in HDFS')
        self._client.write(hdfs_path, data, overwrite=overwrite, append=append)

    def move_or_rename(self, hdfs_src_path, hdfs_dst_path):
        """
        文件移动/重命名
        :param hdfs_src_path:
        :param hdfs_dst_path:
        :return:
        """
        self._client.rename(hdfs_src_path, hdfs_dst_path)

    def hdfs_dir_list(self, hdfs_path):
        """
        获取指定目录下的文件
        当hdfs_path不是目录, 捕获异常并返回None
        :param hdfs_path:
        :return: List[filename] or None
        """
        try:
            return self._client.list(hdfs_path, status=False)
        except HdfsError:
            return None
def interface(train_path,
              test_path,
              output_path,
              target,
              chaid_ratio,
              train_split_ratio=0.3,
              n_estimators=100,
              max_depth=5,
              min_samples_split=3,
              min_samples_leaf=2,
              min_split_gain=0.0,
              colsample_bytree="log2",
              subsample=0.8,
              random_state=100):
    # 设置起始时间
    time.localtime()
    time_trains_start = time.strftime('%Y{y}%m{m}%d{d} %H{h}%M{f}%S{s}'.format(
        y='/', m='/', d='', h=':', f=':', s=''))
    start_time = time.time()

    # 设置输入文件路径
    train_FILENAME = train_path + "/data/Data.csv"  # hdfs文件路径
    test_FILENAME = test_path + "/data/Data.csv"  # hdfs文件路径
    client = Client(HDFS_HOSTS1)
    # 训练数据读取
    with client.read(train_FILENAME) as tr_s:
        tr_content = tr_s.read()
        tr_s = str(tr_content, 'utf-8')
    # 确保文件写入完毕
    tr_file = open("trainData.csv", "w")
    tr_file.flush()
    os.fsync(tr_file)
    tr_file.write(tr_s)
    tr_file.close()
    df_train = pd.read_csv("trainData.csv", header=0)
    print(df_train)

    # 测试数据读取
    with client.read(test_FILENAME) as te_fs:
        te_content = te_fs.read()
        te_s = str(te_content, 'utf-8')
    # 确保文件写入完毕
    te_file = open("testData.csv", "w")
    te_file.flush()
    os.fsync(te_file)
    te_file.write(te_s)
    te_file.close()
    df_test = pd.read_csv("testData.csv", header=0)
    print(df_test)

    test_data_num = df_train.shape[0]
    train_data_num = df_train.shape[0]

    # 卡方检测选出和label列最相关的前chaid_ratio(默认值为前80%)的列
    ch2 = SelectKBest(chi2, k=int(df_train.shape[1] * chaid_ratio))
    chi_df_train = pd.DataFrame(ch2.fit_transform(df_train, df_train[target]))

    label_df = df_train[target]
    # wine数据集 和 sonar 数据集
    clf = RandomForestClassifier(n_estimators, max_depth, min_samples_split,
                                 min_samples_leaf, min_split_gain,
                                 colsample_bytree, subsample, random_state)

    # 数据集分割与训练
    train_count = int(train_split_ratio * len(chi_df_train))
    clf.fit(chi_df_train.ix[:train_count], label_df.ix[:train_count])
    train_acc = metrics.accuracy_score(
        label_df.ix[:train_count], clf.predict(chi_df_train.ix[:train_count]))
    print("模型的准确率:", train_acc)
    # 精确率
    train_precision_score = metrics.precision_score(
        label_df.ix[:train_count], clf.predict(chi_df_train.ix[:train_count]))
    # 召回率
    train_recall_score = metrics.recall_score(
        label_df.ix[:train_count], clf.predict(chi_df_train.ix[:train_count]))
    # F1_Score
    train_f1_score = metrics.f1_score(
        label_df.ix[:train_count], clf.predict(chi_df_train.ix[:train_count]))
    # roc_auc_score
    train_roc_auc_score1 = metrics.roc_auc_score(
        label_df.ix[:train_count], clf.predict(chi_df_train.ix[:train_count]))

    # 对测试集进行处理,保证其和训练集卡方检测后的列数一致
    ch2_list = list(ch2.get_support())
    ch2_list.pop()
    df_test_head = list(df_test.columns)
    for x, y in zip(ch2_list, df_test_head):
        if x == False:
            df_test_head.remove(y)
    df_test = df_test[df_test_head]
    # 预测
    result = clf.predict(df_test)
    # print(result)

    # 设置终止时间,并计算总时间
    train_end = time.time()
    train_seconds = train_end - start_time
    m, s = divmod(train_seconds, 60)
    h, m = divmod(m, 60)
    time_trains_all = "%02d:%02d:%02d" % (h, m, s)
    # print(time_trains_start,time_trains_all)

    # ++++++++++++++++++++++++++++++++++++++++训练结果保存+++++++++++++++++++++++++++++++++++++++#
    ## 保存摘要模型报告文件
    abstract_path = output_path + '/abstract/data/'
    f = open('abstract.csv', mode='w', newline='')
    fileheader = [
        'FrameWork', 'Version', 'model', 'accuracy', 'time_trains_start',
        'time_trains_all', 'test_data_num', 'train_data_num'
    ]
    w = csv.DictWriter(f, fileheader)
    w.writeheader()
    csv_dict = edict()
    csv_dict.FrameWork = 'Scikit-learn'
    csv_dict.Version = sklearn.__version__
    csv_dict.model = '%s' % RandomForestClassifier
    csv_dict.accuracy = str(train_acc)
    csv_dict.time_trains_start = time_trains_start
    csv_dict.time_trains_all = time_trains_all
    csv_dict.test_data_num = str(test_data_num)
    csv_dict.train_data_num = str(train_data_num)
    w.writerow(csv_dict)
    f.close()
    client.delete(abstract_path + 'abstract.csv')
    client.upload(abstract_path + 'abstract.csv', 'abstract.csv')

    ##保存模型版本信息csv文件
    version_path = output_path + '/msg/data/'
    f = open('msg.csv', mode='w', newline='')
    fileheader = [
        'accuracy', 'time_trains_start', 'time_trains_all', 'test_data_num',
        'train_data_num'
    ]
    w = csv.DictWriter(f, fileheader)
    w.writeheader()
    csv_dict = edict()
    csv_dict.accuracy = str(train_acc)
    csv_dict.time_trains_start = time_trains_start
    csv_dict.time_trains_all = time_trains_all
    csv_dict.test_data_num = str(test_data_num)
    csv_dict.train_data_num = str(train_data_num)
    w.writerow(csv_dict)
    f.close()
    client.delete(version_path + 'msg.csv')
    client.upload(version_path + 'msg.csv', 'msg.csv')

    ## 保存训练评价指标模型报告文件
    file_csv_path = output_path + '/evaluation/data/'
    f = open('evaluation.csv', mode='w', newline='')
    fileheader = [
        'accuracy', 'train_precision_score', 'train_recall_score',
        'train_f1_score', 'train_roc_auc_score1'
    ]
    w = csv.DictWriter(f, fileheader)
    w.writeheader()
    csv_dict = edict()
    csv_dict.accuracy = str(train_acc)
    csv_dict.train_precision_score = train_precision_score
    csv_dict.train_recall_score = train_recall_score
    csv_dict.train_f1_score = train_f1_score
    csv_dict.train_roc_auc_score1 = train_roc_auc_score1
    w.writerow(csv_dict)
    f.close()
    client.delete(file_csv_path + 'evaluation.csv')
    client.upload(file_csv_path + 'evaluation.csv', 'evaluation.csv')

    # 保存测试集预测结果文件
    file_csv_path = output_path + '/result/data/'
    dataframe = pd.DataFrame({target: result})
    dataframe.to_csv("result.csv", index=False, sep=',')
    client.delete(file_csv_path + 'result.csv')
    client.upload(file_csv_path + 'result.csv', 'result.csv')
Пример #10
0
    def post(self, request, *args, **kwargs):
        import uuid
        permission_classes = (IsAuthenticated,)
        start_time = time.time()
        file_serializer = DatasourceSerializer(data=request.data)

        if file_serializer.is_valid():
            path = file_serializer.validated_data['file_name']
            user = request.user.id
            # 上传文件的大小
            filesize = round((path.size) / 1024 / 1024, 2)

            #  获取该用户所有文件的大小
            mydata_id = DataSource.objects.filter(user_id=user)
            myData_size = 0
            for i in mydata_id:
                try:
                    x = i.fileSize.replace("KB", '')
                    myData_size += float(x)
                except:
                    continue
            myData_size = round(myData_size / 1024, 2)  # 单位MB

            #  该用户即将上传文件加本身有的大小
            now_userDataSize = filesize + myData_size

            #  查找用户所限制文件上传容量的大小
            user_dataSize_old = UserLevel.objects.get(user_id=user).up_load

            print(type(user_dataSize_old))
            if now_userDataSize > user_dataSize_old:
                return Response({'msg': '您的数据容量不足,请清理数据后在尝试', 'status': False})
            # if 1 > 2:
            #     pass
            else:
                try:
                    is_header = file_serializer.validated_data['is_header']
                    # user =1
                    separator = file_serializer.validated_data['column_delimiter']
                except:
                    # 数据库文件没有表头,所以设置
                    is_header = ''
                    separator = '\n'
                last = (str(path).lower()).split('.')[-1].upper()
                if last == 'CSV' or last == 'TXT' or last == 'SQL':
                    if path.size > LIMIT_FILE_SIZE:
                        format_name = uuid.uuid1()
                        file_serializer.validated_data['format_filename'] = format_name
                        file_serializer.save()
                        client = Client(HDFS_HOST)
                        file_path = os.path.join(settings.MEDIA_ROOT, str(path))
                        with open(file_path, 'rb') as f1:  # 判断文件的编码
                            data_type = chardet.detect(f1.readline())['encoding']
                        if data_type == 'None':
                            return Response({'msg': '数据格式有误', 'status': False})
                        os.renames(file_path, os.path.join(settings.MEDIA_ROOT, str(format_name)))
                        client.upload("/datahoop", os.path.join(settings.MEDIA_ROOT, str(format_name)), n_threads=4)
                        os.remove(os.path.join(settings.MEDIA_ROOT, str(format_name)))
                        try:
                            with client.read('/datahoop/' + str(format_name), encoding=data_type) as reader:
                                filesize = ((client.status('/datahoop/' + str(format_name)))['length']) / 1024
                                filesize = str(round(filesize, 2)) + 'KB'
                                reader = reader.readlines()
                        except:
                            return Response({'msg': '数据读取失败', 'status': False})
                        column_delimiter = separator
                        if is_header == 1:
                            title = (reader[0]).split(column_delimiter)
                            json = {}
                            s = ((reader[0]).split(column_delimiter))
                            for i in s:
                                json[i.replace('\r\n', '')] = [typ.StringType, True]
                            print(json)
                        else:
                            total = len((reader[0]).split(column_delimiter))
                            title = []
                            for i in range(total):
                                title.append('_C' + str(i))
                            json = {}
                            for i in title:
                                json[i] = [typ.StringType, True]

                        column_num = len((reader[0]).split(column_delimiter))
                        row_num = len(reader)
                        DataSource.objects.filter(format_filename=format_name).update(user_id=user,
                                                                                      title=title[:20],
                                                                                      fileSize=filesize,
                                                                                      where='hdfs', row_num=row_num,
                                                                                      column_num=column_num)
                        over_time = time.time()
                        print('ID为<%s>用户--数据上传<%s>文件的时间为--<%s>秒' % (user, format_name, over_time - start_time))
                        return Response({'msg': '数据存储成功', 'status': True})
                    else:
                        global object_id
                        filePath = os.path.join(settings.MEDIA_ROOT, str(path))
                        file_serializer.save()
                        filesize = str(round((path.size) / 1024, 2)) + 'KB'
                        if last == 'XLS' or last == 'XLSX':
                            pass
                        elif last == 'TXT':
                            object_id = tools.save_mongo_txt(filePath, user, is_header, separator, str(path))
                            if object_id != 'none':
                                file_serializer.validated_data['obj_id'] = object_id
                                file_serializer.validated_data['file_name'] = str(path)
                                file_serializer.save()
                            else:
                                DataSource.objects.filter(file_name=str(path), user=1).delete()
                                os.remove(os.path.join(settings.MEDIA_ROOT, str(path)))
                                return Response({'msg': '数据格式有误', 'status': False})
                        elif last == 'CSV':
                            object_id = tools.save_mongo_csv(filePath, user, is_header, separator, str(path))
                            if object_id != 'none':
                                file_serializer.validated_data['obj_id'] = object_id
                                file_serializer.validated_data['file_name'] = str(path)
                                file_serializer.save()
                            else:
                                # uuid = uuid.uuid1()
                                # file_serializer.validated_data['obj_id'] = uuid
                                # file_serializer.validated_data['file_name'] = str(path)
                                # file_serializer.save()

                                DataSource.objects.filter(file_name=str(path), user=1).delete()
                                os.remove(os.path.join(settings.MEDIA_ROOT, str(path)))
                                return Response({'msg': '数据格式有误', 'status': False})
                        elif last == 'SQL':
                            try:
                                object_id = tools.save_mongo_sql(filePath, user)
                                file_serializer.validated_data['obj_id'] = object_id
                                file_serializer.validated_data['file_name'] = str(path)
                                file_serializer.save()
                            except Exception as e:
                                DataSource.objects.filter(file_name=str(path), user=1).delete()
                                os.remove(os.path.join(settings.MEDIA_ROOT, str(path)))
                                return Response({'msg': '数据格式有误', 'status': False})
                        with open(filePath, 'rb') as f1:  # 判断文件的编码
                            data_type = chardet.detect(f1.readline())['encoding']
                        with open(filePath, encoding=data_type, errors='ignore') as reader:  # 按编码读文件
                            reader = reader.readlines()
                        if is_header == 1:
                            title = (reader[0]).split(separator)
                            json = {}
                            s = ((reader[0]).split(separator))
                            for i in s:
                                json[i.replace('\r\n', '')] = [typ.StringType, True]
                            column_num = len((reader[0]).split(separator))
                        else:
                            if last != 'SQL':
                                total = len((reader[0]).split(separator))
                                title = []
                                for i in range(total):
                                    title.append('_C' + str(i))
                                json = {}
                                for i in title:
                                    json[i] = [typ.StringType, True]
                                column_num = len((reader[0]).split(separator))
                            else:
                                total = re.findall(r'[^()]+', reader[0])[1].split(',')
                                title = []
                                for i in range(len(total)):
                                    title.append('_C' + str(i))
                                json = {}
                                for i in title:
                                    json[i] = [typ.StringType, True]
                                column_num = len(total)
                        row_num = len(reader)
                        DataSource.objects.filter(obj_id=object_id).update(user_id=user, title=title[:20],
                                                                           fileSize=filesize, where='mongodb',
                                                                           row_num=row_num, column_num=column_num)
                        os.remove(os.path.join(settings.MEDIA_ROOT, str(path)))
                        over_time = time.time()
                        print('ID为<%s>用户--数据上传<%s>文件的时间为--<%s>秒' % (user, path, over_time - start_time))
                        return Response({'msg': '数据存储成功', 'status': True})
                else:
                    return Response({'msg': '暂不支持此类文件上传', 'status': False})
        else:
            return Response({'msg': '不是一个有效的数据', 'status': False})
Пример #11
0
# 写入文件(覆盖)
client.write(file_name, data="hello hdfs !", overwrite=True)

# 写入文件(追加)
client.write(file_name, data="hello way !", overwrite=False, append=True)

# 读取文件内容
with client.read(file_name, encoding='utf-8') as f:
    print(f.read())

# 文件下载
client.download(file_name, loacl_file_name, overwrite=True)

# 文件上传
client.upload(file_name + '111', loacl_file_name, cleanup=True)

# 删除文件
client.delete(file_name2)

# 文件重命名
client.rename(file_name, file_name2)

# 文件夹底下文件
files = client.list(file_dir, status=False)
for file in files:
    print(file)

# 删除文件夹(递归删除、谨慎)
# client.delete(file_dir, recursive=True)
Пример #12
0
class OpenPAI:
    "client for OpenPAI"

    def __init__(self, config: dict = None, file: str = 'openpai.json'):
        """config should contain
            - rest_server_socket
            - hdfs_web_socket
            - user
            - password
        """
        if config is None:
            with open(file) as fn:
                config = json.load(fn)
        for key in [
                'rest_server_socket', 'hdfs_web_socket', 'user', 'password'
        ]:
            assert key in config, '%s is not defined for OpenPAI' % (key)
        for key in ['rest_server_socket', 'hdfs_web_socket']:
            assert config[key].startswith(
                'http://'), '%s should have http prefix' % (key)

        self.rest_server_socket = config['rest_server_socket']
        self.hdfs_client = Client(config['hdfs_web_socket'])
        self.config = config

    def __get_token(self, user: str, password: str):
        try:
            response = request(
                'POST',
                parse.urljoin(self.rest_server_socket, 'token'),
                headers={
                    'Content-Type': 'application/x-www-form-urlencoded',
                },
                data='username={}&password={}&expiration=30000'.format(
                    user, password),
            )
            if response.status_code == 200:
                return response.json()['token']
            raise Exception(response.reason)
        except Exception as identifier:
            raise Exception(identifier)

    def upload(self, local_path, hdfs_dir, overwrite=True):
        try:
            self.hdfs_client.upload(hdfs_dir, local_path, overwrite=overwrite)
            return True
        except Exception as e:
            print(e)
            return False

    def mkdir(self, hdfs_dir):
        try:
            self.hdfs_client.makedirs(hdfs_dir)
            return True
        except Exception as e:
            return False

    def submit_job(self, job_config):
        self.token = self.__get_token(self.config['user'],
                                      self.config['password'])
        response = request('POST',
                           parse.urljoin(self.rest_server_socket, 'jobs'),
                           headers={
                               'Authorization': 'Bearer ' + self.token,
                               'Content-Type': 'application/json'
                           },
                           json=job_config)
        if response.status_code != 200 and response.status_code != 202:
            raise Exception(response.reason)
Пример #13
0
class RF_HDFS(object):
    def __init__(self):
        self.client = None
        self.directory = None

    def connect_and_login(self, **kwargs):
        import requests

        host = None
        port = None
        user = None
        password = None
        root = None
        timeout = None
        proxy = None

        if 'host' in kwargs:
            host = kwargs['host']
        if 'port' in kwargs:
            port = kwargs['port']
        if 'kdc' in kwargs:
            kdc = kwargs['kdc']
        if 'user' in kwargs:
            user = kwargs['user']
        if 'password' in kwargs:
            password = kwargs['password']
        if 'root' in kwargs:
            root = kwargs['root']
        if 'proxy' in kwargs:
            proxy = kwargs['proxy']
        if 'timeout' in kwargs:
            timeout = kwargs['timeout']

        self.session = requests.Session()
        adapter = requests.adapters.HTTPAdapter(pool_maxsize=0)
        self.session.mount('http://',  adapter)
        self.session.mount('https://', adapter)
        self.session.headers.update({'Connection':'Keep-Alive'})

        self.connectionStatus = False
        try:
            timeout = int(timeout)
            url = "http://" + host + ":" + str(port)

            hdfsLogin = WebHDFS(url, kdc)
            cookieStr = hdfsLogin.authenticate(user, password)
            if cookieStr != None:
                cookieList = cookieStr.split('=', 1)
                cookieDict = {cookieList[0]: cookieList[1]}
                requests.utils.add_dict_to_cookiejar(self.session.cookies, cookieDict)

            self.client = Client(url, root=root, proxy=proxy, timeout=timeout, session=self.session)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

        self.connectionStatus = True
        return self.client

    def checkConnectionStatus(self):
        return self.connectionStatus

    def list_dir(self, directory):
        output = []
        try:
            if directory != None:
                output = self.client.list(directory, status=True)
            else:
                output = self.client.list(self.client.root, status=True)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))
        return output

    def list_names(self, directory):
        output = []
        try:
            if directory != None:
                output = self.client.list(directory, status=False)
            else:
                output = self.client.list(self.client.root, status=False)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))
        return output

    def upload(self, remote_path, local_path, overwrite=False, permission=None):
        output = None
        try:
            output = self.client.upload(remote_path, local_path, overwrite, permission=permission)
        except HdfsError as hdfsError:
            # For some reason this exception includes the entire stack trace after
            # the error message, so split on '\n' and only return the first line.
            error = str(hdfsError).splitlines()[0]
            raise HdfsLibraryError(error)
        except Exception as exception:
            raise HdfsLibraryError(str(exception))
        return output

    def download(self, remote_path, local_path, overwrite=False):
        output = None
        try:
            output = self.client.download(remote_path, local_path, overwrite)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))
        return output

    def mkdir(self, directory, permission):
        try:
            # no return value
            self.client.makedirs(directory, permission=permission)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def rmdir(self, directory):
        try:
            # no return value
            if self.client.delete(directory, recursive=True) == False:
                raise HdfsLibraryError("Directory does not exist: %r", directory)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def rename(self, src_file, dst_file):
        try:
            # no return value
            self.client.rename(src_file, dst_file)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def delete(self, file):
        try:
            # no return value
            if self.client.delete(file) == False:
                raise HdfsLibraryError("File does not exist: %r", file)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def set_time(self, file, mod_time):
        try:
            # no return value
            self.client.set_times(file, -1, mod_time)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def set_owner(self, file, owner, group):
        try:
            # no return value
            self.client.set_owner(file, owner=owner, group=group)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def set_permission(self, file, permission):
        try:
            # no return value
            self.client.set_permission(file, permission=permission)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def set_acl(self, file, aclspec):
        try:
            # no return value
            self.client.set_acl(file, aclspec=aclspec)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))

    def status(self, path):
        output = ''
        try:
            output = self.client.status(path)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))
        return output

    def checksum(self, path):
        output = ''
        try:
            output = self.client.checksum(path)
        except HdfsError as hdfsError:
            raise HdfsLibraryError(str(hdfsError))
        except Exception as exception:
            raise HdfsLibraryError(str(exception))
        return output

    def close(self):
        self.session.close()