Пример #1
0
    def run_bilateral_slice_apply(self,
                                  dev,
                                  grid_data,
                                  guide_data,
                                  input_data,
                                  has_offset=False):
        with tf.device(dev):

            grid_tensor = tf.convert_to_tensor(grid_data,
                                               name='grid',
                                               dtype=tf.float32)
            guide_tensor = tf.convert_to_tensor(guide_data,
                                                name='guide',
                                                dtype=tf.float32)
            input_tensor = tf.convert_to_tensor(input_data,
                                                name='input',
                                                dtype=tf.float32)

            output_tensor = ops.bilateral_slice_apply(grid_tensor,
                                                      guide_tensor,
                                                      input_tensor,
                                                      has_offset=has_offset)

        with self.test_session() as sess:
            output_data = sess.run(output_tensor)

        return output_data
Пример #2
0
def bilateral_slice_apply(grid, guide, input_image, has_offset=True, name=None):
  """Slices into a bilateral grid using the guide map.
  Args:
    grid: (Tensor) [batch_size, grid_h, grid_w, depth, n_outputs]
      grid to slice from.
    guide: (Tensor) [batch_size, h, w ] guide map to slice along.
    input_image: (Tensor) [batch_size, h, w, n_input] input data onto which to
      apply the affine transform.
    name: (string) name for the operation.
  Returns:
    sliced: (Tensor) [batch_size, h, w, n_outputs] sliced output.
  """

  with tf.name_scope(name):
    gridshape = grid.get_shape().as_list()
    if len(gridshape) == 6:
      gs = tf.shape(grid)
      _, _, _, _, n_out, n_in = gridshape
      grid = tf.reshape(grid, tf.stack([gs[0], gs[1], gs[2], gs[3], gs[4]*gs[5]]))
      # grid = tf.concat(tf.unstack(grid, None, axis=5), 4)
    # grid:[-1,16,16,8,12] [batch_size, grid_h, grid_w, depth, n_outputs]
    # guide:[-1,512,512]
    # input_image:[-1,512,512,3]
    sliced = hdrnet_ops.bilateral_slice_apply(grid, guide, input_image, has_offset=has_offset)
    return sliced
Пример #3
0
  def test_guide_gradient(self):
    #TODO: this does not work yet, differentiable 'max' in the tent: max(1-abs(x), 0)?
    for dev in ['/gpu:0']:
      batch_size = 1
      h = 6
      w = 15
      gh = 3
      gw = 9
      d = 7
      i_chans = 1
      o_chans = 1
      grid_shape = [batch_size, gh, gw, d, (i_chans+1)*o_chans]
      guide_shape = [batch_size, h, w]
      input_shape = [batch_size, h, w, i_chans]
      output_shape = [batch_size, h, w, o_chans]

      grid_data = np.random.rand(*grid_shape).astype(np.float32)
      guide_data = np.random.rand(*guide_shape).astype(np.float32)
      input_data = np.random.rand(*input_shape).astype(np.float32)

      with tf.device(dev):
        grid_tensor = tf.convert_to_tensor(grid_data,
                                           name='data',
                                           dtype=tf.float32)
        guide_tensor = tf.convert_to_tensor(guide_data,
                                            name='guide',
                                            dtype=tf.float32)
        input_tensor = tf.convert_to_tensor(input_data,
                                            name='input',
                                            dtype=tf.float32)

        output_tensor = ops.bilateral_slice_apply(grid_tensor, guide_tensor, input_tensor, has_offset=True)

      with self.test_session():
        num, th = tf.test.compute_gradient(
            guide_tensor,
            guide_shape,
            output_tensor,
            output_shape)


        margin = 1e-2
        idx = np.where(np.abs(th-num) >= margin)

        for i in range(len(idx[0])):
          guide_idx = np.unravel_index(idx[0][i], guide_shape)
          output_idx = np.unravel_index(idx[1][i], output_shape)

        err = tf.test.compute_gradient_error(
            guide_tensor,
            guide_shape,
            output_tensor,
            output_shape)
        self.assertLess(err, margin)
Пример #4
0
    def test_guide_gradient(self):
        #TODO: this does not work yet, differentiable 'max' in the tent: max(1-abs(x), 0)?
        for dev in ['/gpu:0']:
            batch_size = 1
            h = 6
            w = 15
            gh = 3
            gw = 9
            d = 7
            i_chans = 1
            o_chans = 1
            grid_shape = [batch_size, gh, gw, d, (i_chans + 1) * o_chans]
            guide_shape = [batch_size, h, w]
            input_shape = [batch_size, h, w, i_chans]
            output_shape = [batch_size, h, w, o_chans]

            grid_data = np.random.rand(*grid_shape).astype(np.float32)
            guide_data = np.random.rand(*guide_shape).astype(np.float32)
            input_data = np.random.rand(*input_shape).astype(np.float32)

            with tf.device(dev):
                grid_tensor = tf.convert_to_tensor(grid_data,
                                                   name='data',
                                                   dtype=tf.float32)
                guide_tensor = tf.convert_to_tensor(guide_data,
                                                    name='guide',
                                                    dtype=tf.float32)
                input_tensor = tf.convert_to_tensor(input_data,
                                                    name='input',
                                                    dtype=tf.float32)

                output_tensor = ops.bilateral_slice_apply(grid_tensor,
                                                          guide_tensor,
                                                          input_tensor,
                                                          has_offset=True)

            with self.test_session():
                num, th = tf.test.compute_gradient(guide_tensor, guide_shape,
                                                   output_tensor, output_shape)

                margin = 1e-2
                idx = np.where(np.abs(th - num) >= margin)

                for i in range(len(idx[0])):
                    guide_idx = np.unravel_index(idx[0][i], guide_shape)
                    output_idx = np.unravel_index(idx[1][i], output_shape)

                err = tf.test.compute_gradient_error(guide_tensor, guide_shape,
                                                     output_tensor,
                                                     output_shape)
                self.assertLess(err, margin)
Пример #5
0
  def run_bilateral_slice_apply(self, dev, grid_data, guide_data, input_data, has_offset=False):
    with tf.device(dev):

      grid_tensor = tf.convert_to_tensor(
          grid_data, name='grid', dtype=tf.float32)
      guide_tensor = tf.convert_to_tensor(
          guide_data, name='guide', dtype=tf.float32)
      input_tensor = tf.convert_to_tensor(
          input_data, name='input', dtype=tf.float32)

      output_tensor = ops.bilateral_slice_apply(grid_tensor, guide_tensor, input_tensor, has_offset=has_offset)

    with self.test_session() as sess:
      output_data = sess.run(output_tensor)

    return output_data
Пример #6
0
    def test_grid_gradient(self):
        for dev in ['/gpu:0']:
            batch_size = 3
            h = 8
            w = 5
            gh = 6
            gw = 3
            d = 7
            i_chans = 3
            o_chans = 3
            grid_shape = [batch_size, gh, gw, d, (1 + i_chans) * o_chans]
            guide_shape = [batch_size, h, w]
            input_shape = [batch_size, h, w, i_chans]
            output_shape = [batch_size, h, w, o_chans]

            grid_data = np.random.rand(*grid_shape).astype(np.float32)
            guide_data = 0.8 * np.random.rand(*guide_shape).astype(
                np.float32) + 0.1
            input_data = np.random.rand(*input_shape).astype(np.float32)

            with tf.device(dev):
                grid_tensor = tf.convert_to_tensor(grid_data,
                                                   name='data',
                                                   dtype=tf.float32)
                guide_tensor = tf.convert_to_tensor(guide_data,
                                                    name='guide',
                                                    dtype=tf.float32)
                input_tensor = tf.convert_to_tensor(input_data,
                                                    name='input',
                                                    dtype=tf.float32)

                output_tensor = ops.bilateral_slice_apply(grid_tensor,
                                                          guide_tensor,
                                                          input_tensor,
                                                          has_offset=True)

            with self.test_session():
                err = tf.test.compute_gradient_error(grid_tensor, grid_shape,
                                                     output_tensor,
                                                     output_shape)

                self.assertLess(err, 3e-4)
Пример #7
0
  def test_input_gradient(self):
    for dev in ['/gpu:0']:
      batch_size = 1
      h = 8
      w = 5
      gh = 6
      gw = 3
      d = 7
      i_chans = 3
      o_chans = 3
      grid_shape = [batch_size, gh, gw, d, (1+i_chans)*o_chans]
      guide_shape = [batch_size, h, w]
      input_shape = [batch_size, h, w, i_chans]
      output_shape = [batch_size, h, w, o_chans]

      grid_data = np.random.rand(*grid_shape).astype(np.float32)
      guide_data = np.random.rand(*guide_shape).astype(np.float32)
      input_data = np.random.rand(*input_shape).astype(np.float32)

      with tf.device(dev):
        grid_tensor = tf.convert_to_tensor(grid_data,
                                           name='data',
                                           dtype=tf.float32)
        guide_tensor = tf.convert_to_tensor(guide_data,
                                            name='guide',
                                            dtype=tf.float32)
        input_tensor = tf.convert_to_tensor(input_data,
                                            name='input',
                                            dtype=tf.float32)

        output_tensor = ops.bilateral_slice_apply(grid_tensor, guide_tensor, input_tensor, has_offset=True)

      with self.test_session():
        err = tf.test.compute_gradient_error(
            input_tensor,
            input_shape,
            output_tensor,
            output_shape)

        self.assertLess(err, 3e-4)
Пример #8
0
def bilateral_slice_apply(grid, guide, input_image, has_offset=True, name=None):
  """Slices into a bilateral grid using the guide map.

  Args:
    grid: (Tensor) [batch_size, grid_h, grid_w, depth, n_outputs]
      grid to slice from.
    guide: (Tensor) [batch_size, h, w ] guide map to slice along.
    input_image: (Tensor) [batch_size, h, w, n_input] input data onto which to
      apply the affine transform.
    name: (string) name for the operation.
  Returns:
    sliced: (Tensor) [batch_size, h, w, n_outputs] sliced output.
  """

  with tf.name_scope(name):
    gridshape = grid.get_shape().as_list()
    if len(gridshape) == 6:
      gs = tf.shape(grid)
      _, _, _, _, n_out, n_in = gridshape
      grid = tf.reshape(grid, tf.stack([gs[0], gs[1], gs[2], gs[3], gs[4]*gs[5]]))
      # grid = tf.concat(tf.unstack(grid, None, axis=5), 4)

    sliced = hdrnet_ops.bilateral_slice_apply(grid, guide, input_image, has_offset=has_offset)
    return sliced