def create_fixation_pixellist(self, fixation_list): # return list of (hi, wi) coord pixel_list = [] for time, v, _, _ in fixation_list: theta, phi = head_orientation_lib.vector_to_ang(v) x, y = head_orientation_lib.ang_to_geoxy(theta, phi, head_orientation_lib.H, head_orientation_lib.W) pixel_list.append((x, y)) return pixel_list
def pixellist_from_v_list(v_list): #note, pixellist need to compatible with dataset #dataset 2: fliplr #dataset 1: maybe flipud pixel_list = [] for v in v_list: theta, phi = head_orientation_lib.vector_to_ang(v) hi, wi = head_orientation_lib.ang_to_geoxy(theta, phi, head_orientation_lib.H, head_orientation_lib.W) pixel_list.append([hi, wi]) return pixel_list
def create_fixation_pixelset(self, fixation_list): # return set of (hi, wi) coord, eliminate redundancy pixel_set = set() orifix_list = [] for time, v, _, _ in fixation_list: theta, phi = head_orientation_lib.vector_to_ang(v) x, y = head_orientation_lib.ang_to_geoxy(theta, phi, head_orientation_lib.H, head_orientation_lib.W) if (int(x), int(y)) not in pixel_set: pixel_set.add((int(x), int(y))) orifix_list.append([time, v, 0, 0]) return pixel_set, orifix_list
series_t = [] series_v = [] print(f, end='\r') for item in vector: if item[0] == f: series_t.append(item[0]) series_v.append(item[1]) if (len(series_t) != 0): mean_series_t = np.mean(np.array(series_t)) * dt mean_series_v = np.mean(np.array(series_v), axis=0) theta, phi = head_orientation_lib.vector_to_ang( mean_series_v) x, y = head_orientation_lib.ang_to_geoxy( theta, phi, head_orientation_lib.H, head_orientation_lib.W) viewport.append([mean_series_t, (x, y)]) pickle.dump( viewport, open( PATH + 'viewport_ds{}_topic{}_user{}'.format( dataset, topic, user), 'wb')) user += 1 else: user = 1 for vector in vector_ds: viewport = [] print("Usernum={}".format(user))