def __joint_log_likelihood(self, X): """ Adapted to HeAT from scikit-learn. Calculates joint log-likelihood for n_samples to be assigned to each class. Returns ht.DNDarray joint_log_likelihood(n_samples, n_classes). """ jll_size = self.classes_._DNDarray__array.numel() jll_shape = (X.shape[0], jll_size) joint_log_likelihood = ht.empty(jll_shape, dtype=X.dtype, split=X.split, device=X.device) for i in range(jll_size): jointi = ht.log(self.class_prior_[i]) n_ij = -0.5 * ht.sum(ht.log(2.0 * ht.pi * self.sigma_[i, :])) n_ij -= 0.5 * ht.sum(((X - self.theta_[i, :]) ** 2) / (self.sigma_[i, :]), 1) joint_log_likelihood[:, i] = jointi + n_ij return joint_log_likelihood
def test_log2(self): elements = 15 comparison = torch.arange(1, elements, dtype=torch.float64).log() # logarithm of float32 float32_tensor = ht.arange(1, elements, dtype=ht.float32) float32_log = ht.log(float32_tensor) self.assertIsInstance(float32_log, ht.tensor) self.assertEqual(float32_log.dtype, ht.float32) self.assertEqual(float32_log.dtype, ht.float32) in_range = (float32_log._tensor__array - comparison.type(torch.float32)) < FLOAT_EPSILON self.assertTrue(in_range.all()) # logarithm of float64 float64_tensor = ht.arange(1, elements, dtype=ht.float64) float64_log = ht.log(float64_tensor) self.assertIsInstance(float64_log, ht.tensor) self.assertEqual(float64_log.dtype, ht.float64) self.assertEqual(float64_log.dtype, ht.float64) in_range = (float64_log._tensor__array - comparison) < FLOAT_EPSILON self.assertTrue(in_range.all()) # logarithm of ints, automatic conversion to intermediate floats int32_tensor = ht.arange(1, elements, dtype=ht.int32) int32_log = ht.log(int32_tensor) self.assertIsInstance(int32_log, ht.tensor) self.assertEqual(int32_log.dtype, ht.float64) self.assertEqual(int32_log.dtype, ht.float64) in_range = (int32_log._tensor__array - comparison) < FLOAT_EPSILON self.assertTrue(in_range.all()) # logarithm of longs, automatic conversion to intermediate floats int64_tensor = ht.arange(1, elements, dtype=ht.int64) int64_log = ht.log(int64_tensor) self.assertIsInstance(int64_log, ht.tensor) self.assertEqual(int64_log.dtype, ht.float64) self.assertEqual(int64_log.dtype, ht.float64) in_range = (int64_log._tensor__array - comparison) < FLOAT_EPSILON self.assertTrue(in_range.all()) # check exceptions with self.assertRaises(TypeError): ht.log([1, 2, 3]) with self.assertRaises(TypeError): ht.log('hello world')
def test_log(self): elements = 15 tmp = torch.arange(1, elements, dtype=torch.float64, device=self.device.torch_device).log() comparison = ht.array(tmp) # logarithm of float32 float32_tensor = ht.arange(1, elements, dtype=ht.float32) float32_log = ht.log(float32_tensor) self.assertIsInstance(float32_log, ht.DNDarray) self.assertEqual(float32_log.dtype, ht.float32) self.assertEqual(float32_log.dtype, ht.float32) self.assertTrue(ht.allclose(float32_log, comparison.astype(ht.float32))) # logarithm of float64 float64_tensor = ht.arange(1, elements, dtype=ht.float64) float64_log = ht.log(float64_tensor) self.assertIsInstance(float64_log, ht.DNDarray) self.assertEqual(float64_log.dtype, ht.float64) self.assertEqual(float64_log.dtype, ht.float64) self.assertTrue(ht.allclose(float64_log, comparison)) # logarithm of ints, automatic conversion to intermediate floats int32_tensor = ht.arange(1, elements, dtype=ht.int32) int32_log = ht.log(int32_tensor) self.assertIsInstance(int32_log, ht.DNDarray) self.assertEqual(int32_log.dtype, ht.float64) self.assertEqual(int32_log.dtype, ht.float64) self.assertTrue(ht.allclose(int32_log, comparison)) # logarithm of longs, automatic conversion to intermediate floats int64_tensor = ht.arange(1, elements, dtype=ht.int64) int64_log = int64_tensor.log() self.assertIsInstance(int64_log, ht.DNDarray) self.assertEqual(int64_log.dtype, ht.float64) self.assertEqual(int64_log.dtype, ht.float64) self.assertTrue(ht.allclose(int64_log, comparison)) # check exceptions with self.assertRaises(TypeError): ht.log([1, 2, 3]) with self.assertRaises(TypeError): ht.log("hello world")
def logsumexp(self, a, axis=None, b=None, keepdim=False, return_sign=False): """ Adapted to HeAT from scikit-learn. Compute the log of the sum of exponentials of input elements. Parameters ---------- a : ht.tensor Input array. axis : None or int or tuple of ints, optional Axis or axes over which the sum is taken. By default `axis` is None, and all elements are summed. keepdim : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array. b : ht.tensor, optional Scaling factor for exp(`a`) must be of the same shape as `a` or broadcastable to `a`. These values may be negative in order to implement subtraction. #return_sign : bool, optional If this is set to True, the result will be a pair containing sign information; if False, results that are negative will be returned as NaN. Default is False (no sign information). #TODO: returns NotImplementedYet error. Returns ------- res : ht.tensor The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))`` is returned. #TODO sgn : ndarray NOT IMPLEMENTED YET If return_sign is True, this will be an array of floating-point numbers matching res and +1, 0, or -1 depending on the sign of the result. If False, only one result is returned. """ if b is not None: raise NotImplementedError("Not implemented for weighted logsumexp") a_max = ht.max(a, axis=axis, keepdim=True) # TODO: sanitize a_max / implement isfinite(): sanitation module, cf. #468 # if a_max.numdims > 0: # a_max[~np.isfinite(a_max)] = 0 # elif not np.isfinite(a_max): # a_max = 0 # TODO: reinstate after allowing b not None # if b is not None: # b = np.asarray(b) # tmp = b * np.exp(a - a_max) # else: tmp = ht.exp(a - a_max) s = ht.sum(tmp, axis=axis, keepdim=keepdim) if return_sign: raise NotImplementedError("Not implemented for return_sign") # sgn = np.sign(s) # TODO: np.sign # s *= sgn # /= makes more sense but we need zero -> zero out = ht.log(s) if not keepdim: a_max = ht.squeeze(a_max, axis=axis) out += a_max # if return_sign: #TODO: np.sign # return out, sgn # else: return out