def __init__(self, config, input_shape=None): super(Net, self).__init__(config, input_shape) self.NUM_CLASSES = P.GLB_PARAMS[P.KEY_DATASET_METADATA][ P.KEY_DS_NUM_CLASSES] self.ALPHA = config.CONFIG_OPTIONS.get(P.KEY_ALPHA, 1.) # Here we define the layers of our network self.fc = H.HebbianConv2d( in_channels=self.get_input_shape()[0], out_size=self.NUM_CLASSES, kernel_size=(self.get_input_shape()[1], self.get_input_shape()[2]) if len(self.get_input_shape()) >= 3 else 1, reconstruction=H.HebbianConv2d.REC_QNT_SGN, reduction=H.HebbianConv2d.RED_W_AVG, lrn_sim=HF.raised_cos2d_pow(2), lrn_act=HF.identity, out_sim=HF.vector_proj2d, out_act=HF.identity, weight_upd_rule=H.HebbianConv2d.RULE_BASE, alpha=self.ALPHA, ) # input_shape-shaped input, NUM_CLASSES-dimensional output (one per class)
def __init__(self, config, input_shape=None): super(Net, self).__init__(config, input_shape) self.NUM_CLASSES = P.GLB_PARAMS[P.KEY_DATASET_METADATA][ P.KEY_DS_NUM_CLASSES] self.DEEP_TEACHER_SIGNAL = config.CONFIG_OPTIONS.get( P.KEY_DEEP_TEACHER_SIGNAL, False) self.COMPETITIVE = False self.K = 0 self.RECONSTR = H.HebbianConv2d.REC_LIN_CMB self.RED = H.HebbianConv2d.RED_AVG self.LRN_SIM = HF.kernel_mult2d self.LRN_ACT = F.relu self.OUT_SIM = HF.kernel_mult2d self.OUT_ACT = F.relu self.WEIGHT_UPD_RULE = H.HebbianConv2d.RULE_HEBB self.LOC_LRN_RULE = config.CONFIG_OPTIONS.get(P.KEY_LOCAL_LRN_RULE, 'hpca') if self.LOC_LRN_RULE == 'hwta': self.COMPETITIVE = True self.K = config.CONFIG_OPTIONS.get(PP.KEY_WTA_K, 1) self.RECONSTR = H.HebbianConv2d.REC_QNT_SGN self.RED = H.HebbianConv2d.RED_W_AVG self.LRN_SIM = HF.raised_cos2d_pow(2) self.LRN_ACT = HF.identity self.OUT_SIM = HF.vector_proj2d self.OUT_ACT = F.relu self.WEIGHT_UPD_RULE = H.HebbianConv2d.RULE_BASE self.ALPHA = config.CONFIG_OPTIONS.get(P.KEY_ALPHA, 1.) # Here we define the layers of our network # Fourth convolutional layer self.conv4 = H.HebbianConv2d( in_channels=self.get_input_shape()[0], out_size=(12, 16), kernel_size=3, competitive=self.COMPETITIVE, reconstruction=self.RECONSTR, reduction=self.RED, lrn_sim=self.LRN_SIM, lrn_act=F.relu, out_sim=self.OUT_SIM, out_act=F.relu, weight_upd_rule=self.WEIGHT_UPD_RULE, alpha=self.ALPHA, ) # 192 input channels, 12x16=192 output channels, 3x3 convolutions self.bn4 = nn.BatchNorm2d(192) # Batch Norm layer # Fifth convolutional layer self.conv5 = H.HebbianConv2d( in_channels=192, out_size=(16, 16), kernel_size=3, competitive=self.COMPETITIVE, reconstruction=self.RECONSTR, reduction=self.RED, lrn_sim=self.LRN_SIM, lrn_act=F.relu, out_sim=self.OUT_SIM, out_act=F.relu, weight_upd_rule=self.WEIGHT_UPD_RULE, alpha=self.ALPHA, ) # 192 input channels, 16x16=256 output channels, 3x3 convolutions self.bn5 = nn.BatchNorm2d(256) # Batch Norm layer # Sixth convolutional layer self.conv6 = H.HebbianConv2d( in_channels=256, out_size=(16, 16), kernel_size=3, competitive=self.COMPETITIVE, reconstruction=self.RECONSTR, reduction=self.RED, lrn_sim=self.LRN_SIM, lrn_act=F.relu, out_sim=self.OUT_SIM, out_act=F.relu, weight_upd_rule=self.WEIGHT_UPD_RULE, alpha=self.ALPHA, ) # 256 input channels, 16x16=256 output channels, 3x3 convolutions self.bn6 = nn.BatchNorm2d(256) # Batch Norm layer # Seventh convolutional layer self.conv7 = H.HebbianConv2d( in_channels=256, out_size=(16, 24), kernel_size=3, competitive=self.COMPETITIVE, reconstruction=self.RECONSTR, reduction=self.RED, lrn_sim=self.LRN_SIM, lrn_act=F.relu, out_sim=self.OUT_SIM, out_act=F.relu, weight_upd_rule=self.WEIGHT_UPD_RULE, alpha=self.ALPHA, ) # 256 input channels, 16x24=384 output channels, 3x3 convolutions self.bn7 = nn.BatchNorm2d(384) # Batch Norm layer # Eighth convolutional layer self.conv8 = H.HebbianConv2d( in_channels=384, out_size=(16, 32), kernel_size=3, competitive=self.COMPETITIVE, reconstruction=self.RECONSTR, reduction=self.RED, lrn_sim=self.LRN_SIM, lrn_act=F.relu, out_sim=self.OUT_SIM, out_act=F.relu, weight_upd_rule=self.WEIGHT_UPD_RULE, alpha=self.ALPHA, ) # 384 input channels, 16x32=512 output channels, 3x3 convolutions self.bn8 = nn.BatchNorm2d(512) # Batch Norm layer self.CONV_OUTPUT_SHAPE = self.get_output_fmap_shape(self.CONV_OUTPUT) # FC Layers (convolution with kernel size equal to the entire feature map size is like a fc layer) self.fc9 = H.HebbianConv2d( in_channels=self.CONV_OUTPUT_SHAPE[0], out_size=(64, 64), kernel_size=(self.CONV_OUTPUT_SHAPE[1], self.CONV_OUTPUT_SHAPE[2]), competitive=self.COMPETITIVE, reconstruction=self.RECONSTR, reduction=self.RED, lrn_sim=self.LRN_SIM, lrn_act=F.relu, out_sim=self.OUT_SIM, out_act=F.relu, weight_upd_rule=self.WEIGHT_UPD_RULE, alpha=self.ALPHA, ) # conv_output_shape-shaped input, 64x64=4096 output channels self.bn9 = nn.BatchNorm2d(4096) # Batch Norm layer self.fc10 = H.HebbianConv2d( in_channels=4096, out_size=self.NUM_CLASSES, kernel_size=1, reconstruction=H.HebbianConv2d.REC_QNT_SGN, reduction=H.HebbianConv2d.RED_W_AVG, lrn_sim=HF.raised_cos2d_pow(2), lrn_act=HF.identity, out_sim=HF.vector_proj2d, out_act=HF.identity, weight_upd_rule=H.HebbianConv2d.RULE_BASE, alpha=self.ALPHA, ) # 4096-dimensional input, NUM_CLASSES-dimensional output (one per class)
def __init__(self, config, input_shape=None): super(Net, self).__init__(config, input_shape) self.NUM_CLASSES = P.GLB_PARAMS[P.KEY_DATASET_METADATA][ P.KEY_DS_NUM_CLASSES] self.DEEP_TEACHER_SIGNAL = config.CONFIG_OPTIONS.get( P.KEY_DEEP_TEACHER_SIGNAL, False) self.COMPETITIVE = False self.K = 0 self.RECONSTR = H.HebbianConv2d.REC_LIN_CMB self.RED = H.HebbianConv2d.RED_AVG self.LRN_SIM = HF.kernel_mult2d self.LRN_ACT = F.relu self.OUT_SIM = HF.kernel_mult2d self.OUT_ACT = F.relu self.WEIGHT_UPD_RULE = H.HebbianConv2d.RULE_HEBB self.LOC_LRN_RULE = config.CONFIG_OPTIONS.get(P.KEY_LOCAL_LRN_RULE, 'hpca') if self.LOC_LRN_RULE == 'hwta': self.COMPETITIVE = True self.K = config.CONFIG_OPTIONS.get(PP.KEY_WTA_K, 1) self.RECONSTR = H.HebbianConv2d.REC_QNT_SGN self.RED = H.HebbianConv2d.RED_W_AVG self.LRN_SIM = HF.raised_cos2d_pow(2) self.LRN_ACT = HF.identity self.OUT_SIM = HF.vector_proj2d self.OUT_ACT = F.relu self.WEIGHT_UPD_RULE = H.HebbianConv2d.RULE_BASE self.ALPHA = config.CONFIG_OPTIONS.get(P.KEY_ALPHA, 1.) # Here we define the layers of our network # First convolutional layer self.conv1 = H.HebbianConv2d( in_channels=3, out_size=(8, 12), kernel_size=5, competitive=self.COMPETITIVE, reconstruction=self.RECONSTR, reduction=self.RED, lrn_sim=self.LRN_SIM, lrn_act=F.relu, out_sim=self.OUT_SIM, out_act=F.relu, weight_upd_rule=self.WEIGHT_UPD_RULE, alpha=self.ALPHA, ) # 3 input channels, 8x12=96 output channels, 5x5 convolutions self.bn1 = nn.BatchNorm2d(96) # Batch Norm layer self.CONV_OUTPUT_SHAPE = self.get_output_fmap_shape(self.CONV_OUTPUT) # FC Layers (convolution with kernel size equal to the entire feature map size is like a fc layer) self.fc2 = H.HebbianConv2d( in_channels=self.CONV_OUTPUT_SHAPE[0], out_size=self.NUM_CLASSES, kernel_size=(self.CONV_OUTPUT_SHAPE[1], self.CONV_OUTPUT_SHAPE[2]), reconstruction=H.HebbianConv2d.REC_QNT_SGN, reduction=H.HebbianConv2d.RED_W_AVG, lrn_sim=HF.raised_cos2d_pow(2), lrn_act=HF.identity, out_sim=HF.vector_proj2d, out_act=HF.identity, weight_upd_rule=H.HebbianConv2d.RULE_BASE, alpha=self.ALPHA, ) # conv_output_shape-shaped input, 10-dimensional output (one per class)