def get_imported_data(self): # only works with imp_8 so far data_bv = imp.merged(self.probe[4], self.start_datetime, self.end_datetime) data_bv = data_bv.data # data_b was previously a time series indices = [pd.Timestamp(index).to_pydatetime() for index in data_bv.index.values] combined_data = pd.DataFrame(index=indices) for index in indices: combined_data.loc[index, 'vp_x'] = data_bv.loc[index, 'vx_mom_gse'] combined_data.loc[index, 'vp_y'] = data_bv.loc[index, 'vy_mom_gse'] combined_data.loc[index, 'vp_z'] = data_bv.loc[index, 'vz_mom_gse'] combined_data.loc[index, 'n_p'] = data_bv.loc[index, 'np_mom'] # for now both temperatures are equal to keep it similar to other classes as no separate data was found combined_data.loc[index, 'Tp_par'] = data_bv.loc[index, 'Tp_mom'] combined_data.loc[index, 'Tp_perp'] = data_bv.loc[index, 'Tp_mom'] combined_data.loc[index, 'r_sun'] = 1 - np.sqrt( data_bv.loc[index, 'x_gse'] ** 2 + data_bv.loc[index, 'y_gse'] ** 2 + data_bv.loc[ index, 'z_gse'] ** 2) * 4.26354E-5 # earth radius to au, 1- because distance initially from earth combined_data.loc[index, 'Bx'] = data_bv.loc[index, 'Bx_gse'] combined_data.loc[index, 'By'] = data_bv.loc[index, 'By_gse'] combined_data.loc[index, 'Bz'] = data_bv.loc[index, 'Bz_gse'] return combined_data
def test_merged(self): df = imp.merged(self.probe, self.starttime, self.endtime) check_data_output(df)
def test_mereged(self): df = imp.merged(self.probe, self.starttime, self.endtime) check_datetime_index(df)