def Get_Earnings_Surprise(stock):
    '''Go to Yahoo Finance and scrape the Analyst Estimates. Determine if the Earning Suprises were positive.
    Return the results in a JSON object.'''
    
    analyst_estimates = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 EPS Surprises
    analyst_estimates_web = requests.get(analyst_estimates)
    analyst_estimates_text = analyst_estimates_web.content
    
    analyst_estimates_soup = bs(analyst_estimates_text, "lxml")
    
    analyst_estimates_rows = analyst_estimates_soup.findAll('tr')
    #i = 0
    try:
        for n in analyst_estimates_rows:
            n = str(n)    
            if mods.Match('<tr><td class="yfnc_tablehead1"(.*?)EPS Est', n):                
                n = n.split('<td class="yfnc_tabledata1">')
                est_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(est_list): 
                    est_list[lst] = float(item.replace('</tr>', '').replace('</td>', ''))      
            elif mods.Match('<tr><td class="yfnc_tablehead1"(.*?)EPS Actual', n):                     
                n = n.split('<td class="yfnc_tabledata1">')
                actual_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(actual_list): 
                    actual_list[lst] = float(item.replace('</tr>', '').replace('</td>', ''))  
            elif mods.Match('<tr><th class="yfnc_tablehead1"(.*?)Revenue Est', n):
                n = n.split('<th class="yfnc_tablehead1" scope="col" style="font-size:11px;text-align:right;" width="18%">')
                dates = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(dates): 
                    dates[lst] = item.replace('</tr>', '').replace('</td>', '').replace('</th>', '').replace('<br/>', ' ') 
        surprise1, surprise2, surprise3, surprise4 = 1 - est_list[0]/actual_list[0], 1 - est_list[1]/actual_list[1], 1 - est_list[2]/actual_list[2], 1 - est_list[3]/actual_list[3]
        
        #Test if Earnings Surprise was Positive
        is_postive_pes_surprise = False
        if surprise1 > 0 and surprise2 > 0 and surprise3 > 0 and surprise4 > 0:
            is_postive_pes_surprise = True
        
        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Earnings_Surprise'
        results[dates[0].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise1 
        results[dates[1].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise2 
        results[dates[2].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise3 
        results[dates[3].replace('Qtr.', '').replace('Current', '',).replace('Next', '').replace('Year', '').strip()] = surprise4 
        results['Actuals'] = actual_list
        results['EST'] = est_list
        results['Result'] = is_postive_pes_surprise
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Earnings_Surprise'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
Пример #2
0
def Get_Revenue(stock):
    '''Go to Yahoo Finance and Pull the Last Three Years of Revenue Results and Determine if Revenue Passes or Fails Test.
    Return the results as a JSON object.'''

    revenue = 'http://ca.finance.yahoo.com/q/is?s=' + stock + '&annual'
    #Get Revenue Data from Last Income Statement
    revenue_web = requests.get(revenue)
    revenue_text = revenue_web.content   
    revenue_soup = bs(revenue_text, "lxml") 
    try:
        # Get Last Three Years of Revenue
        revenue = []    
        for n in revenue_soup.find_all('tr'):
            n = str(n)
            if mods.Match('<tr><td colspan="2">\n<strong>\n\s+Total Revenue', n):
                n = n.replace('\n', '').replace('</strong>', '').replace('</td>', '').replace('<td align="right">', '').replace('</tr', '').strip()
                n = n.split('<strong>')
                for item in n:
                    item = item.strip()
                    if mods.Match('\d+', item):
                        item = item.replace(' ', '').replace('>', '').replace(',', '').replace('\xc2\xa0\xc2\xa0', '').strip()                  
                        revenue.append(item)

        last_reported_rev, second_reported_rev, third_reported_rev = float(revenue[0]), float(revenue[1]), float(revenue[2])
    #
    #    #Get Dates for Last Three Reported Years
        dates = mods.get_reported_dates(stock)
        last_reported_dt, year_before_reported_dt, two_yr_before_reported_dt = dates[0], dates[1], dates[2]
      
    #    #Test if Revenue Results are Positive
        is_positive_rev = False
        if last_reported_rev > second_reported_rev and second_reported_rev > third_reported_rev:
            is_positive_rev = True
    #    
    #    #Create Ditionary of Results  
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Revenue_Test'
        results['DateRun'] = mods.Today()
        results['Result'] = is_positive_rev
        results[last_reported_dt] = last_reported_rev
        results[year_before_reported_dt] = second_reported_rev
        results[two_yr_before_reported_dt] = third_reported_rev    
        return results
    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Revenue_Test'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
def Get_Earnings_V_Industry(stock):
    '''Go to Yahoo finance and pull information from Analyst Estimates. Determine if the earnings 
    are favorable compared to the industry. Return the results as a JSON object.'''

    analyst_estimates = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 EPS Surprises
    analyst_estimates_web = requests.get(analyst_estimates)
    analyst_estimates_text = analyst_estimates_web.content

    analyst_estimates_soup = bs(analyst_estimates_text)

    analyst_estimates_rows = analyst_estimates_soup.findAll('tr')
    #i = 0
    try:

        for n in analyst_estimates_rows:
            n = str(n)
            if mods.Match('<tr><td class="yfnc_tablehead1"(.*?)Price/Earnings',
                          n):
                n = n.split('<td class="yfnc_tabledata1">')
                pe_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(pe_list):
                    pe_list[lst] = float(
                        item.replace('</tr>', '').replace('</td>',
                                                          '').replace('%', ''))

        #Test if Earnings Surprise was Positive
        is_postive_pe_v_industry = False
        if pe_list[0] > pe_list[1]:
            is_postive_pe_v_industry = True

        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Earnings Versus Industry'
        results['PE Estimate: ' + stock] = pe_list[0]
        results['Industry Estimate:'] = pe_list[1]
        results['Result'] = is_postive_pe_v_industry
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Earnings Versus Industry'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
Пример #4
0
def Get_Options(stock, strike_price):
    # # Use Pandas Data Reader to pull data from Yahoo Finance
    all_data = {}
    #for ticker in symbol:
    all_data = web.get_data_yahoo(stock, '1/1/2015', mods.Today())

    lst = []
    last = 0
    for current in all_data['Adj Close']:
        if len(lst) == 0:
            lst.append(np.nan)
            last = current
        else:
            lst.append(current / last)
            last = current
    all_data['Percent Changed'] = lst

    # # Run Monte Carlo simulations. 1000 iterations for 60 weeks to determine number of times the value of the stock is greater than the strike price.

    simulation_end = []
    num_iters = 100
    num_weeks = 10
    changed_avg = all_data['Percent Changed'].mean()
    changed_stdev = all_data['Percent Changed'].std()
    for i in range(0, num_iters):
        for i in range(0, num_weeks):
            if i == 0:
                wk_end = all_data['Adj Close'][0]
            else:
                wk_end = norminv(np.random.random_sample(), changed_avg,
                                 changed_stdev) * wk_end
        simulation_end.append(max(0, wk_end - strike_price))
    return all_data
def Get_Growth_Forecast(stock):
    '''Go to Yahoo Finance and get the analyst estimates. Determine if the last 4 EPS surprise results
    were positive. Return the results as a JSON object.'''

    analyst_estimates = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 EPS Surprises
    analyst_estimates_web = requests.get(analyst_estimates)
    analyst_estimates_text = analyst_estimates_web.content

    analyst_estimates_soup = bs(analyst_estimates_text, 'lxml')

    analyst_estimates_rows = analyst_estimates_soup.findAll('tr')

    #i = 0
    try:
        for n in analyst_estimates_rows:
            n = str(n)
            if mods.Match('<tr><td class="yfnc_tablehead1"(.*?)Next 5 Years',
                          n):
                n = n.split('<td class="yfnc_tabledata1">')
                est_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(est_list):
                    est_list[lst] = float(
                        item.replace('</tr>', '').replace('</td>',
                                                          '').replace('%', ''))

        #Test if Earnings Surprise was Positive
        is_postive_growth_forecast = False
        if est_list[0] > 8:
            is_postive_growth_forecast = True

        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Growth_Forecast'
        results['Growth Forecast: ' + stock] = est_list[0]
        results['Result'] = is_postive_growth_forecast
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Growth_Forecast'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
Пример #6
0
def Get_Shares_Short(stock):
    '''Got to Yahoo Finance and determine the Insider Tracking of the stock. Return the results as a 
    JSON object.'''
    insider_transactions = 'http://ca.finance.yahoo.com/q/it?s=' + stock + '+Insider+Transactions'
    #Get Insider Transaction Data (Last 6 Months and Last 3 Months)
    insider_transactions_web = requests.get(insider_transactions)
    insider_transactions_text = insider_transactions_web.content

    insider_transactions_soup = bs(insider_transactions_text)

    insider_transactions_rows = insider_transactions_soup.findAll('tr')
    i = 0
    insider_list = []
    for n in insider_transactions_rows:
        if n.text[0:10] == 'Net Shares':
            n = str(n)
            n = n.split('<td align="right" class="yfnc_tabledata1"')
            insider_list.append(n[1].replace('</td>', '').replace(
                '</tr>', '').replace(' width="20%">',
                                     '').replace('>', '').replace(',', ''))
    try:
        #Test if Positive Insider Tracking (Positive Purchase of Stock in Last 3 Months)
        is_postive_insider = False
        if mods.Match('\(\d+\)', insider_list[1]):
            is_postive_insider = True

        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Insider_Trading'
        results['Insider Purchasing 6 Month: ' + stock] = insider_list[0]
        results['Insider Purchasing 3 Month: ' + stock] = insider_list[1]
        results['Result'] = is_postive_insider
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Insider_Trading'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
Пример #7
0
def main():
    for stock in stocks:
        data = collections.OrderedDict()
        data['DateRun'] = mods.Today()
        data['Stock'] = stock
        stock = stock.lower()
        if mods.get_balance_sheet(stock, 'Common Stocks') != None:
            #Revenue Test        
            revenue_result = revenue.Get_Revenue(stock)
            Dict_Aggregator(data, revenue_result)      
            #4 Key Result Tests        
            key_result = key.Get_Key_Indicators(stock)
            for item in key_result:
                Dict_Aggregator(data, item)
            #Positive Return on Equity        
            roe_result = roe.Get_ROE(stock)
            Dict_Aggregator(data, roe_result)
            #Analyst Opinion
            opinion_result = opinion.Get_Analyst_Opinion(stock)
            Dict_Aggregator(data, opinion_result)
            #Earnings Forecast        
            forecast_result = forecast.Get_Earnings_Forecast(stock)
            Dict_Aggregator(data, forecast_result)
            #Earnings Per Share        
            eps_result = eps.Get_EPS(stock)
            Dict_Aggregator(data, eps_result)
            #Earnings Surprise        
            eps_surprise = surprise.Get_Earnings_Surprise(stock)
            Dict_Aggregator(data, eps_surprise)        
            #Growth Forecast
            growth = growth_forecast.Get_Growth_Forecast(stock)
            Dict_Aggregator(data, growth) 
            #PEG Ratio        
            peg_ratio = peg.Get_PEG_Ratio(stock)
            Dict_Aggregator(data, peg_ratio)
            #Earnings Versus Industry        
            pevi = industry.Get_Earnings_V_Industry(stock)
            Dict_Aggregator(data, pevi)
            #Insider Trading        
            short = shares_short.Get_Shares_Short(stock)
            Dict_Aggregator(data, short)
        mods.Insert_Data(export, 'Results', Evaluator(data))
Пример #8
0
def Get_Key_Indicators(stock):
    '''Use the Common Modules to scrape data from different websites for the stock. Determine if the results are positive.
    Return the results in JSON objects.'''
    try:
        # Get Last Three Years of Net Income
        net_income = mods.get_net_income(stock, 'Net Income')
        net_income = mods.Is_Negative(net_income)
        last_reported_ni, second_reported_ni, third_reported_ni = float(
            net_income[0]), float(net_income[1]), float(net_income[2])

        #Get Last Three Years of Common Stock
        common_stock = mods.get_balance_sheet(stock, 'Common Stocks')
        common_stock = mods.Is_Negative(common_stock)
        last_reported_cs, second_reported_cs, third_reported_cs = float(
            common_stock[0]), float(common_stock[1]), float(common_stock[2])

        treasury_stock = mods.get_balance_sheet(stock, 'Treasury Stock')
        treasury_stock = mods.Is_Negative(treasury_stock)
        last_reported_ts, second_reported_ts, third_reported_ts = float(
            treasury_stock[0]), float(treasury_stock[1]), float(
                treasury_stock[2])

        #Get Dates for Last Three Reported Years
        dates = mods.get_reported_dates(stock)
        last_reported_dt, year_before_reported_dt, two_yr_before_reported_dt = dates[
            0], dates[1], dates[2]

        #Test if EPS is postivie for last three years
        last_reported_eps, second_reported_eps, third_reported_eps = last_reported_ni / (
            last_reported_cs - last_reported_ts), second_reported_ni / (
                second_reported_cs - second_reported_ts), third_reported_ni / (
                    third_reported_cs - third_reported_ts)
        is_positive_eps = False
        if last_reported_eps > second_reported_eps and second_reported_eps > third_reported_eps:
            is_positive_eps = True

        #Get Cash On Hand Last Three Years
        cash = mods.get_balance_sheet(stock, 'Cash')
        cash = mods.Is_Negative(cash)
        last_reported_cash, second_reported_cash, third_reported_cash = float(
            cash[0]), float(cash[1]), float(cash[2])

        #Get Long Term Debt
        debt = mods.get_balance_sheet(stock, '>Long-Term Debt')
        debt = mods.Is_Negative(debt)
        last_reported_debt, second_reported_debt, third_reported_debt = float(
            debt[0]), float(debt[1]), float(debt[2])

        #Determine Long Term Investments
        investments = mods.get_balance_sheet(stock, 'Long-Term Investments')
        investments = mods.Is_Negative(investments)
        last_reported_investments, second_reported_investments, third_reported_investments = float(
            investments[0]), float(investments[1]), float(investments[2])

        #Test if Net Income has been positive the last three years
        is_positive_ni = False
        if last_reported_ni > second_reported_ni and second_reported_ni > third_reported_ni:
            is_positive_ni = True

        #Test if Cash on Hand is positive
        is_positive_cash = False
        if last_reported_cash > 5000000:
            is_positive_cash = True

        #Create Ditionarys of Results
        results_cash = collections.OrderedDict()
        results_cash['Stock'] = stock
        results_cash['TestRun'] = 'Cash'
        results_cash['DateRun'] = mods.Today()
        results_cash['Result'] = is_positive_cash
        results_cash[last_reported_dt] = last_reported_cash
        results_cash[year_before_reported_dt] = second_reported_cash
        results_cash[two_yr_before_reported_dt] = third_reported_cash

        results_ni = collections.OrderedDict()
        results_ni['Stock'] = stock
        results_ni['TestRun'] = 'Net_Income'
        results_ni['DateRun'] = mods.Today()
        results_ni['Result'] = is_positive_ni
        results_ni[last_reported_dt] = last_reported_ni
        results_ni[year_before_reported_dt] = second_reported_ni
        results_ni[two_yr_before_reported_dt] = third_reported_ni

        debt_data = collections.OrderedDict()
        debt_data['Stock'] = stock
        debt_data['TestRun'] = 'Long_Term_Debt'
        debt_data['DateRun'] = mods.Today()
        debt_data['Result'] = 'Data_Only'
        debt_data[last_reported_dt] = last_reported_debt
        debt_data[year_before_reported_dt] = second_reported_debt
        debt_data[two_yr_before_reported_dt] = third_reported_debt

        invest_data = collections.OrderedDict()
        invest_data['Stock'] = stock
        invest_data['TestRun'] = 'Long_Term_Investment'
        invest_data['DateRun'] = mods.Today()
        invest_data['Result'] = 'Data_Only'
        invest_data[last_reported_dt] = last_reported_investments
        invest_data[year_before_reported_dt] = second_reported_investments
        invest_data[two_yr_before_reported_dt] = third_reported_investments
        return [results_cash, results_ni, invest_data, debt_data]

    except:
        results_cash = collections.OrderedDict()
        results_cash['stock'] = stock
        results_cash['TestRun'] = 'Cash'
        results_cash['DateRun'] = mods.Today()
        results_cash['Result'] = 'Test Failed'

        results_ni = collections.OrderedDict()
        results_ni['stock'] = stock
        results_ni['TestRun'] = 'Net_Income'
        results_ni['DateRun'] = mods.Today()
        results_ni['Result'] = 'Test Failed'
        return [results_cash, results_ni]


#Testing:
#stock = 'aapl'
#print Get_Key_Indicators(stock)
#print mods.get_balance_sheet(stock, 'Treasury Stock')
#print get_balance_sh(stock, 'Common Stocks')
Пример #9
0
            last = current
        else:
            lst.append(current / last)
            last = current
    all_data['Percent Changed'] = lst

    # # Run Monte Carlo simulations. 1000 iterations for 60 weeks to determine number of times the value of the stock is greater than the strike price.

    simulation_end = []
    num_iters = 100
    num_weeks = 10
    changed_avg = all_data['Percent Changed'].mean()
    changed_stdev = all_data['Percent Changed'].std()
    for i in range(0, num_iters):
        for i in range(0, num_weeks):
            if i == 0:
                wk_end = all_data['Adj Close'][0]
            else:
                wk_end = norminv(np.random.random_sample(), changed_avg,
                                 changed_stdev) * wk_end
        simulation_end.append(max(0, wk_end - strike_price))
    return all_data


end = mods.Today()
start = '1/1/2015'
#print web.DataReader('AAPL', 'yahoo-actions', start, end)
import datetime
datetime.datetime.strptime('1/1/15')
print len(web.get_data_yahoo(stock, start, end))
Пример #10
0
def Get_Earnings_Forecast(stock):
    '''Go to Yahoo Finance and scrape the Analyst Estimates. Determine if the Earnings Forecast is postive.
    Return the results in a JSON object.'''

    forecast = 'http://ca.finance.yahoo.com/q/ae?s=' + stock + '+Analyst+Estimates'
    #Get Last 4 Quarters of Earnings Forecasts
    forecast_web = requests.get(forecast)
    forecast_text = forecast_web.content
    forecast_soup = bs(forecast_text)
    forecast_rows = forecast_soup.findAll('tr')
    #i = 0
    try:
        lists = []
        for n in forecast_rows:
            n = str(n)
            if mods.Match('<tr><th class="yfnc_tablehead1"(.*?)Earnings Est',
                          n):
                n = n.split(
                    '<th class="yfnc_tablehead1" scope="col" style="font-size:11px; font-weight:normal;text-align:right;" width="18%">'
                )
                dates_list = [n[1], n[2], n[3], n[4]]
                for lst, item in enumerate(dates_list):
                    dates_list[lst] = item.replace('</tr>', '').replace(
                        '</td>', '').replace('</th>',
                                             '').replace('<br/>', ' ')
            elif mods.Match(
                    '<tr><td class="yfnc_tablehead1"(.*?)Avg. Estimate', n):
                n = n.split('<td class="yfnc_tabledata1">')
                forecast_list = [n[1], n[2], n[3], n[4]]
                try:
                    for lst, item in enumerate(forecast_list):
                        forecast_list[lst] = float(
                            item.replace('</tr>', '').replace('</td>', ''))
                    lists.append(forecast_list)
                except:
                    dummy = 0

        #Test for Positive Forecasts
        is_positive_earnings_forecast = False
        if lists[0][0] < lists[0][1] and lists[0][1] < lists[0][2] and lists[
                0][2] < lists[0][3]:
            is_positive_earnings_forecast = True

        #Create Ditionary of Results

        results = collections.OrderedDict()
        results['Stock'] = stock
        results['TestRun'] = 'Earnings_Forecast'
        results['DateRun'] = mods.Today()
        results['Result'] = is_positive_earnings_forecast
        results['Current Qtr'] = lists[0][0]
        results['Next Qtr'] = lists[0][1]
        results['Current Year'] = lists[0][2]
        results['Next Year'] = lists[0][3]
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Earnings_Forecast'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results


##Testing:
#stock = 'AAPL'
#print Get_Earnings_Forecast(stock)
def Get_Analyst_Opinion(stock):
    '''Go to Yahoo Finance and get the last three monts of Analyst Opinions, determine if the analyst optinion is postive,
    and return the results as a JSON object.'''

    analyst_opinion = 'http://ca.finance.yahoo.com/q/ao?s=' + stock + '+Analyst+Opinion'
    analyst_opinion_web = requests.get(analyst_opinion)
    analyst_opinion_text = analyst_opinion_web.content
    analyst_opinion_soup = bs(analyst_opinion_text)

    #i = 0
    try:
        for n in analyst_opinion_soup.find_all('tr'):
            if n.text[0:6] == 'Strong':
                strong_buy = str(n)
                strong_buy = strong_buy.split(
                    '<td align="center" class="yfnc_tabledata1">')
                for lst, item in enumerate(strong_buy):
                    strong_buy[lst] = item.replace('</td>', '')
                strong_buy[-1] = strong_buy[-1].replace('</tr>', '')
                strong_buy = [
                    float(strong_buy[1]),
                    float(strong_buy[2]),
                    float(strong_buy[3]),
                    float(strong_buy[4])
                ]
            elif n.text[0:3] == 'Buy':
                buy = str(n)
                buy = buy.split('<td align="center" class="yfnc_tabledata1">')
                for lst, item in enumerate(buy):
                    buy[lst] = item.replace('</td>', '')
                buy[-1] = buy[-1].replace('</tr>', '')
                buy = [
                    float(buy[1]),
                    float(buy[2]),
                    float(buy[3]),
                    float(buy[4])
                ]
            elif n.text[0:4] == 'Hold':
                hold = str(n)
                hold = hold.split(
                    '<td align="center" class="yfnc_tabledata1">')
                for lst, item in enumerate(hold):
                    hold[lst] = item.replace('</td>', '')
                hold[-1] = hold[-1].replace('</tr>', '')
                hold = [
                    float(hold[1]),
                    float(hold[2]),
                    float(hold[3]),
                    float(hold[4])
                ]
            elif n.text[0:12] == 'Underperform':
                underperform = str(n)
                underperform = underperform.split(
                    '<td align="center" class="yfnc_tabledata1">')
                for lst, item in enumerate(underperform):
                    underperform[lst] = item.replace('</td>', '')
                underperform[-1] = underperform[-1].replace('</tr>', '')
                underperform = [
                    float(underperform[1]),
                    float(underperform[2]),
                    float(underperform[3]),
                    float(underperform[4])
                ]
            elif n.text[0:4] == 'Sell':
                sell = str(n)
                sell = sell.split(
                    '<td align="center" class="yfnc_tabledata1">')
                for lst, item in enumerate(sell):
                    sell[lst] = item.replace('</td>', '')
                sell[-1] = sell[-1].replace('</tr>', '')
                sell = [
                    float(sell[1]),
                    float(sell[2]),
                    float(sell[3]),
                    float(sell[4])
                ]
        #Create Pandas Dataframe
        table = [strong_buy, buy, hold, underperform, sell]
        columns = ['Strong Buy', 'Buy', 'Hold', 'Underperform', 'Sell']
        index = [
            'This Month', 'Last Month', 'Two Months Ago', 'Three Months Ago'
        ]
        df = pd.DataFrame(table, columns, index)
        #Determine if the analyst opinion suggests to buy the stock
        is_positive_analyst_opinion = False
        if df['This Month']['Strong Buy'] + df['This Month']['Buy'] > df[
                'This Month']['Hold'] + df['This Month']['Underperform'] + df[
                    'This Month']['Sell']:
            is_positive_analyst_opinion = True

        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['TestRun'] = 'Analyst_Opinion'
        results['DateRun'] = mods.Today()
        results['DataFrame'] = df.reset_index().to_json(orient='index')
        results['Result'] = is_positive_analyst_opinion
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Analyst_Opinion'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results


##Testing:
#stock = 'AAPL'
#print Get_Analyst_Opinion(stock)
Пример #12
0
def Get_ROE(stock):        
    '''Go to Yahoo Finance. Get the results from the Key Statistics page, Income Statement, and Balance Sheet.
	Determine if the results are positive for a good return on equity. Return the results as a JSON object.'''
    
    key_stats = 'http://ca.finance.yahoo.com/q/ks?s=' + stock + '+Key+Statistics'
    income_statement = 'http://ca.finance.yahoo.com/q/is?s=' + stock + '+Income+Statement&annual'
    balance_sheet = 'http://ca.finance.yahoo.com/q/bs?s=' + stock + '+Balance+Sheet&annual'
    
    #Get Last 12 Months ROE
    key_stats_web = requests.get(key_stats)
    key_stats_text = key_stats_web.content
    
    key_stats_soup = bs(key_stats_text, "lxml")
    
    for n in key_stats_soup.find_all('tr'):
        if n.text[0:16] == 'Return on Equity':          
            amount = n.text.split(':')
            amount = str(amount[1])
            roe_12month = float(amount[0:-1])
       
    # Get Last Three Years of Return on Equity (Net Income/Stock Holder's Equity)
    # First get the Last Three Years of Net Income from Income Statement
    income_statement_web = requests.get(income_statement)
    income_statement_text = income_statement_web.content
    
    income_statement_soup = bs(income_statement_text)
    
    income_statement_rows = income_statement_soup.findAll('tr')
    #i = 0
    try:
        for row in income_statement_rows:
            row = str(row)
            if mods.Match('<tr><td colspan="2">\n<strong>\n\s+Net Income', row):  
                row = row.split('\n')
                last_reported_ni, second_reported_ni, third_reported_ni =  row[6].strip(), row[10].strip(), row[14].strip()
                last_reported_ni, second_reported_ni, third_reported_ni = float(last_reported_ni[0:-4].replace(',', '')),float(second_reported_ni[0:-4].replace(',', '')), float(third_reported_ni[0:-4].replace(',', ''))
    
        # Second get the Last Three Years of StockHolder's Equity from Balance Sheet
        balance_sheet_web = requests.get(balance_sheet)
        balance_sheet_text = balance_sheet_web.content
        
        balance_sheet_soup = bs(balance_sheet_text, 'lxml')
        
        balance_sheet_rows = balance_sheet_soup.findAll('tr')
        for row in balance_sheet_rows:
            row = str(row)
            if mods.Match('<tr><td colspan="2">\n<strong>\n\s+Total Stockholder Equity', row):
                row = row.split('\n')
                last_reported_se, second_reported_se, third_reported_se =  row[6].strip(), row[10].strip(), row[14].strip()
                last_reported_se, second_reported_se, third_reported_se = float(last_reported_se[0:-4].replace(',', '')),float(second_reported_se[0:-4].replace(',', '')), float(third_reported_se[0:-4].replace(',', ''))
        
        #Third Calculate ROE (Net Income/Stock Holders Equity)
        last_reported_roe, second_reported_roe, third_reported_roe = last_reported_ni/last_reported_se, second_reported_ni/second_reported_se, third_reported_ni/third_reported_se
        #Get Dates for Last Three Reported Years
        last_reported_dt, year_before_reported_dt, two_yr_before_reported_dt = mods.get_reported_dates(stock)
    
        is_positive_rev = False
        now = datetime.datetime.now()
        if int(last_reported_dt[0:2]) - now.month < 6:
            if roe_12month > second_reported_roe and second_reported_roe > third_reported_roe:
                is_positive_rev = True
        # Time since last annual reported revenue was less than 6 months
        else:
            if last_reported_roe > second_reported_roe and second_reported_roe > third_reported_roe:
                is_positive_rev = True
        
        #Create Ditionary of Results
        
        results = collections.OrderedDict()
        results['Stock'] = stock
        results['DateRun'] = mods.Today()
        results['TestRun'] = 'Positive_Return_on_Equity'
        results['Result'] = is_positive_rev
        results[last_reported_dt] = last_reported_roe
        results[year_before_reported_dt] = second_reported_roe
        results[two_yr_before_reported_dt] = third_reported_roe
        results['12 Month Return On Equity'] = roe_12month 
        return results
    
    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'Positive_Return_on_Equity'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results
def Get_EPS(stock):

    #Go to Yahoo Finance and Pull the Last Three Years of Revenue Results and Determine if Revenue Passes or Fails Test
    #Current Year: http://finance.yahoo.com/q/ks?s=AAPL+Key+Statistics
    #Last Years Income Statement: http://finance.yahoo.com/q/is?s=AAPL+Income+Statement&annual

    key_stats = 'http://ca.finance.yahoo.com/q/ks?s=' + stock + '+Key+Statistics'
    market_watch = 'http://www.marketwatch.com/investing/stock/' + stock + '/financials'

    #Get Last 12 Months Earnings Per Share
    key_stats_web = requests.get(key_stats)
    key_stats_text = key_stats_web.content

    key_stats_soup = bs(key_stats_text)

    for n in key_stats_soup.find_all('tr'):
        if n.text[0:11] == 'Diluted EPS':
            amount = n.text.split(':')
            eps_12month = float(amount[1])

    # Get Last Three Years of Earnings Per Share
    market_watch_web = requests.get(market_watch)
    market_watch_text = market_watch_web.content

    market_watch_soup = bs(market_watch_text)

    market_watch_rows = market_watch_soup.findAll('tr')

    #tag = '<tr class="mainRow"> \
    #<td class="rowTitle"><a data-ref="ratio_Eps1YrAnnualGrowth" href="#"><span class="expand"></span></a> EPS (Basic)</td>'

    #i = 0
    try:
        for row in market_watch_rows:
            row = str(row)
            if mods.Match('<tr class="mainRow">\n(.*?)EPS \(Diluted\)', row):
                row = row.split('<td class="valueCell">')
                last_reported_eps, second_reported_eps, third_reported_eps = float(
                    row[5][0:4].strip()), float(row[4][0:4].strip()), float(
                        row[3][0:4].strip())

        #Get Dates for Last Three Reported Years
        last_reported_dt, year_before_reported_dt, two_yr_before_reported_dt = mods.get_reported_dates(
            stock)
        #print mods.get_reported_dates(stock)
        is_positive_eps = False
        now = datetime.datetime.now()
        if int(last_reported_dt[0:2]) - now.month < 6:

            if eps_12month > second_reported_eps and second_reported_eps > third_reported_eps:
                is_positive_eps = True
        # Time since last annual reported revenue was less than 6 months
        else:
            if last_reported_eps > second_reported_eps and second_reported_eps > third_reported_eps:
                is_positive_eps = True
        '''
        '''
        #Create Ditionary of Results
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'EPS'
        results['DateRun'] = mods.Today()
        results['Result'] = is_positive_eps
        results[last_reported_dt] = last_reported_eps
        results[year_before_reported_dt] = second_reported_eps
        results[two_yr_before_reported_dt] = third_reported_eps
        results['12 Month Reported EPS'] = eps_12month
        return results

    except:
        results = collections.OrderedDict()
        results['stock'] = stock
        results['TestRun'] = 'EPS'
        results['DateRun'] = mods.Today()
        results['Result'] = 'Test Failed'
        return results


#Testing:
#stock = 'AAPL'
#print Get_EPS(stock)