Пример #1
0
def test_data(sess,params,X,Y,index_list,S_list,R_L_list,F_list,e, pre_test,n_batches):
    is_test=1
    dic_state=ut.get_state_list(params)
    I= np.asarray([np.diag([1.0]*params['n_output']) for i in range(params["batch_size"])],dtype=np.float32)
    params["reset_state"]=-1 #Never reset

    state_reset_counter_lst=[0 for i in range(batch_size)]
    total_loss=0.0
    total_pred_loss=0.0
    total_meas_loss=0.0
    total_n_count=0.0
    for minibatch_index in xrange(n_batches):
        state_reset_counter_lst=[s+1 for s in state_reset_counter_lst]
        # print state_reset_counter_lst
        (dic_state,x,y,r,f,_,state_reset_counter_lst,_)= \
            th.prepare_batch(is_test,index_list, minibatch_index, batch_size,
                                       S_list, dic_state, params, Y, X, R_L_list,F_list,state_reset_counter_lst)
        feed=th.get_feed(Model,params,r,x,y,I,dic_state, is_training=0)

        states,final_output,final_pred_output,final_meas_output,y =sess.run([Model.states,Model.final_output,Model.final_pred_output,Model.final_meas_output,Model.y], feed)

        for k in states.keys():
            dic_state[k] = states[k]

        if params["normalise_data"]==3 or params["normalise_data"]==2:
            final_output=ut.unNormalizeData(final_output,params["y_men"],params["y_std"])
            final_pred_output=ut.unNormalizeData(final_pred_output,params["y_men"],params["y_std"])
            final_meas_output=ut.unNormalizeData(final_meas_output,params["x_men"],params["x_std"])
            y=ut.unNormalizeData(y,params["y_men"],params["y_std"])
        if params["normalise_data"]==4:
            final_output=ut.unNormalizeData(final_output,params["x_men"],params["x_std"])
            final_pred_output=ut.unNormalizeData(final_pred_output,params["x_men"],params["x_std"])
            final_meas_output=ut.unNormalizeData(final_meas_output,params["x_men"],params["x_std"])
            y=ut.unNormalizeData(y,params["x_men"],params["x_std"])

        test_loss,n_count=ut.get_loss(params,gt=y,est=final_output,r=r)
        test_pred_loss,n_count=ut.get_loss(params,gt=y,est=final_pred_output,r=r)
        test_meas_loss,n_count=ut.get_loss(params,gt=y,est=final_meas_output,r=r)
        total_loss+=test_loss*n_count
        total_pred_loss+=test_pred_loss*n_count
        total_meas_loss+=test_meas_loss*n_count
        total_n_count+=n_count
        # if (minibatch_index%show_every==0):
        #     print pre_test+" test batch loss: (%i / %i / %i)  %f"%(e,minibatch_index,n_train_batches,test_loss)
    total_loss=total_loss/total_n_count
    total_pred_loss=total_pred_loss/total_n_count
    total_meas_loss=total_meas_loss/total_n_count
    s =pre_test+' Loss --> epoch %i | error %f, %f, %f'%(e,total_loss,total_pred_loss,total_meas_loss)
    ut.log_write(s,params)
    return total_loss
Пример #2
0
def train(Model,params):
    I= np.asarray([np.diag([1.0]*params['n_output']) for i in range(params["batch_size"])],dtype=np.float32)

    batch_size=params["batch_size"]
    num_epochs=100000
    decay_rate=0.9
    show_every=100
    deca_start=3
    pre_best_loss=10000
    with tf.Session() as sess:#config=gpu_config
        tf.global_variables_initializer().run()
        #saver = tf.train.Saver()
        # if params["model"] == "kfl_QRf":
            # ckpt = tf.train.get_checkpoint_state(params["mfile"])
            # if ckpt and ckpt.model_checkpoint_path:
            #     saver.restore(sess, ckpt.model_checkpoint_path)
            #     mfile = ckpt.model_checkpoint_path
            #     params["est_file"] = params["est_file"] + mfile.split('/')[-1].replace('.ckpt', '') + '/'
            #     print "Loaded Model: %s" % ckpt.model_checkpoint_path
        # if params["model"] == "kfl_QRf":
        #     for var in Model.tvars:
        #         path = '/mnt/Data1/hc/tt/cp/weights/' + var.name.replace('transitionF/','')
        #         if os.path.exists(path+'.npy'):
        #             val=np.load(path+'.npy')
        #             sess.run(tf.assign(var, val))
        #     print 'PreTrained LSTM model loaded...'


        # sess.run(Model.predict())
        print ('Training model:'+params["model"])
        noise_std = params['noise_std']
        new_noise_std=0.0
        for e in range(num_epochs):
            if e>(deca_start-1):
                sess.run(tf.assign(Model.lr, params['lr'] * (decay_rate ** (e))))
            else:
                sess.run(tf.assign(Model.lr, params['lr']))
            total_train_loss=0

            state_reset_counter_lst=[0 for i in range(batch_size)]
            index_train_list_s=index_train_list
            dic_state = ut.get_state_list(params)
            # total_loss = test_data(sess, params, X_test, Y_test, index_test_list, S_Test_list, R_L_Test_list,
            #                        F_list_test, e, 'Test Check', n_test_batches)
            if params["shufle_data"]==1 and params['reset_state']==1:
                index_train_list_s = ut.shufle_data(index_train_list)

            for minibatch_index in xrange(n_train_batches):
                is_test = 0
                state_reset_counter_lst=[s+1 for s in state_reset_counter_lst]
                (dic_state,x,y,r,f,_,state_reset_counter_lst,_)= \
                    th.prepare_batch(is_test,index_train_list_s, minibatch_index, batch_size,
                                       S_Train_list, dic_state, params, Y_train, X_train, R_L_Train_list,F_list_train,state_reset_counter_lst)
                if noise_std >0.0:
                   u_cnt= e*n_train_batches + minibatch_index
                   if u_cnt in params['noise_schedule']:
                       if u_cnt==params['noise_schedule'][0]:
                         new_noise_std=noise_std
                       else:
                           new_noise_std = noise_std * (u_cnt / (params['noise_schedule'][1]))

                       s = 'NOISE --> u_cnt %i | error %f' % (u_cnt, new_noise_std)
                       ut.log_write(s, params)
                   if new_noise_std>0.0:
                       noise=np.random.normal(0.0,new_noise_std,x.shape)
                       x=noise+x

                feed = th.get_feed(Model, params, r, x, y, I, dic_state, is_training=1)
                train_loss,states,_ = sess.run([Model.cost,Model.states,Model.train_op], feed)

                for k in states.keys():
                    dic_state[k] = states[k]

                total_train_loss+=train_loss
                if (minibatch_index%show_every==0):
                    print "Training batch loss: (%i / %i / %i)  %f"%(e,minibatch_index,n_train_batches,
                                                                 train_loss)

            total_train_loss=total_train_loss/n_train_batches
            s='TRAIN --> epoch %i | error %f'%(e, total_train_loss)
            ut.log_write(s,params)

            pre_test = "TRAINING_Data"
            total_loss = test_data(sess, params, X_train, Y_train, index_train_list, S_Train_list, R_L_Train_list,
                                   F_list_train, e, pre_test, n_train_batches)

            pre_test="TEST_Data"
            total_loss= test_data(sess,params,X_test,Y_test,index_test_list,S_Test_list,R_L_Test_list,F_list_test,e, pre_test,n_test_batches)
            base_cp_path = params["cp_file"] + "/"

            lss_str = '%.5f' % total_loss
            model_name = lss_str + "_" + str(e) + "_" + str(params["rn_id"]) + params["model"] + "_model.ckpt"
            save_path = base_cp_path + model_name
            saved_path = False
            if pre_best_loss > total_loss:
                pre_best_loss = total_loss
                model_name = lss_str + "_" + str(e) + "_" + str(params["rn_id"]) + params["model"] + "_best_model.ckpt"
                save_path = base_cp_path + model_name
                saved_path = saver.save(sess, save_path)
            else:
                if e % 3.0 == 0:
                    saved_path = saver.save(sess, save_path)
            if saved_path != "":
                s = 'MODEL_Saved --> epoch %i | error %f path %s' % (e, total_loss, saved_path)
                ut.log_write(s, params)
Пример #3
0
def train(tracker, params):
    I = np.asarray([
        np.diag([1.0] * params['n_output'])
        for i in range(params["batch_size"])
    ],
                   dtype=np.float32)

    batch_size = params["batch_size"]

    decay_rate = 0.95
    # show_every=100
    deca_start = 10
    # pre_best_loss=10000
    with tf.Session(config=gpu_config) as sess:
        tf.global_variables_initializer().run()
        saver = tf.train.Saver()
        # sess.run(tracker.predict())
        print 'Training model:' + params["model"]
        noise_std = params['noise_std']
        new_noise_std = 0.0
        median_result_lst = []
        mean_result_lst = []
        for e in range(num_epochs):
            if e == 2:
                params['lr'] = params['lr']
            if e > (deca_start - 1):
                sess.run(
                    tf.assign(tracker.lr, params['lr'] * (decay_rate**(e))))
            else:
                sess.run(tf.assign(tracker.lr, params['lr']))
            total_train_loss = 0

            state_reset_counter_lst = [0 for i in range(batch_size)]
            index_train_list_s = index_train_list
            dic_state = ut.get_state_list(params)
            if params["shufle_data"] == 1 and params['reset_state'] == 1:
                index_train_list_s = ut.shufle_data(index_train_list)

            for minibatch_index in xrange(n_train_batches):
                is_test = 0
                state_reset_counter_lst = [
                    s + 1 for s in state_reset_counter_lst
                ]
                (dic_state,x,y,r,f,_,state_reset_counter_lst,_)= \
                    th.prepare_batch(is_test,index_train_list_s, minibatch_index, batch_size,
                                       S_Train_list, dic_state, params, Y_train, X_train, R_L_Train_list,F_list_train,state_reset_counter_lst)
                if noise_std > 0.0:
                    u_cnt = e * n_train_batches + minibatch_index
                    if u_cnt in params['noise_schedule']:
                        new_noise_std = noise_std * (
                            u_cnt / (params['noise_schedule'][0]))
                        s = 'NOISE --> u_cnt %i | error %f' % (u_cnt,
                                                               new_noise_std)
                        ut.log_write(s, params)
                    if new_noise_std > 0.0:
                        noise = np.random.normal(0.0, new_noise_std, x.shape)
                        x = noise + x

                feed = th.get_feed(tracker,
                                   params,
                                   r,
                                   x,
                                   y,
                                   I,
                                   dic_state,
                                   is_training=1)
                train_loss, states, _ = sess.run(
                    [tracker.cost, tracker.states, tracker.train_op], feed)
                # print last_pred.shape
                # print states.shape

                for k in states.keys():
                    dic_state[k] = states[k]

                total_train_loss += train_loss
            # if e%5==0:
            #         print total_train_loss
            pre_test = "TEST_Data"
            total_loss, median_result, mean_result, final_output_lst, file_lst, noise_lst = test_data(
                sess, params, X_test, Y_test, index_test_list, S_Test_list,
                R_L_Test_list, F_list_test, e, pre_test, n_test_batches)
            if len(full_median_result_lst) > 1:
                if median_result[0] < np.min(full_median_result_lst,
                                             axis=0)[0]:
                    # ut.write_slam_est(est_file=params["est_file"],est=final_output_lst,file_names=file_lst)
                    #     ut.write_slam_est(est_file=params["noise_file"],est=noise_lst,file_names=file_lst)
                    #     save_path=params["cp_file"]+params['msg']
                    # saver.save(sess,save_path)
                    print 'Writing estimations....'

            full_median_result_lst.append(median_result)
            median_result_lst.append(median_result)
            mean_result_lst.append(mean_result)
            # base_cp_path = params["cp_file"] + "/"
            #
            # lss_str = '%.5f' % total_loss
            # model_name = lss_str + "_" + str(e) + "_" + str(params["rn_id"]) + params["model"] + "_model.ckpt"
            # save_path = base_cp_path + model_name
            # saved_path = False
            # if pre_best_loss > total_loss:
            #     pre_best_loss = total_loss
            #     model_name = lss_str + "_" + str(e) + "_" + str(params["rn_id"]) + params["model"] + "_best_model.ckpt"
            #     save_path = base_cp_path + model_name
            #     saved_path = saver.save(sess, save_path)
            # else:
            #     if e % 3.0 == 0:
            #         saved_path = saver.save(sess, save_path)
            # if saved_path != "":
            #     s = 'MODEL_Saved --> epoch %i | error %f path %s' % (e, total_loss, saved_path)
            #     ut.log_write(s, params)
    return median_result_lst, mean_result_lst
Пример #4
0
def test_data(sess, params, X, Y, index_list, S_list, R_L_list, F_list, e,
              pre_test, n_batches):
    dic_state = ut.get_state_list(params)
    I = np.asarray([
        np.diag([1.0] * params['n_output'])
        for i in range(params["batch_size"])
    ],
                   dtype=np.float32)
    dict_err = {}
    dict_name = {}
    uniq_lst = [item for item in collections.Counter(S_list)]
    is_test = 1

    file_lst = []

    for u in uniq_lst:
        idx = np.where(S_list == u)
        sname = F_list[idx][0][0][0].split('/')[-2]
        dict_name[u] = sname
        dict_err[u] = []

    state_reset_counter_lst = [0 for i in range(batch_size)]
    total_loss = 0.0
    total_n_count = 0.0
    full_curr_id_lst = []
    full_noise_lst = []
    full_r_lst = []
    full_y_lst = []
    full_final_output_lst = []
    for minibatch_index in xrange(n_batches):
        state_reset_counter_lst = [s + 1 for s in state_reset_counter_lst]
        (dic_state,x_sel,y,r,f,curr_sid,state_reset_counter_lst,curr_id_lst)= \
            th.prepare_batch(is_test,index_list, minibatch_index, batch_size,
                                       S_list, dic_state, params, Y, X, R_L_list,F_list,state_reset_counter_lst)
        feed = th.get_feed(tracker,
                           params,
                           r,
                           x_sel,
                           y,
                           I,
                           dic_state,
                           is_training=0)

        if params["model"] == "lstm":
            states, final_output, sel_y = sess.run(
                [tracker.states, tracker.final_output, tracker.y], feed)
        else:
            states,final_output,full_final_output,sel_y,x,qnoise_lst =\
                sess.run([tracker.states,tracker.final_output,tracker.full_final_output,tracker.y,tracker.x,tracker.qnoise_lst], feed)
        full_final_output = np.asarray(full_final_output).reshape(
            (batch_size, params['seq_length'], params['n_output']))
        for k in states.keys():
            dic_state[k] = states[k]

        full_curr_id_lst.extend(curr_id_lst)
        full_r_lst.extend(r)
        file_lst.extend(f)
        full_final_output_lst.extend(full_final_output)
        full_y_lst.extend(y)

        if params["model"] != "lstm":
            full_noise_lst.extend(qnoise_lst)

    # total_loss=total_loss/total_n_count

    index_lst = sh.get_nondublicate_lst(full_curr_id_lst)
    full_r_lst = np.asarray(full_r_lst)[index_lst]

    # if params["model"] != "lstm":
    #     full_noise_lst=np.asarray(full_noise_lst)[index_lst]
    #     full_noise_lst=full_noise_lst[full_r_lst==1]

    full_final_output_lst = np.asarray(full_final_output_lst)[index_lst]
    full_y_lst = np.asarray(full_y_lst)[index_lst]
    file_lst = np.asarray(file_lst)[index_lst]

    file_lst = file_lst[full_r_lst == 1]
    full_final_output_lst = full_final_output_lst[full_r_lst == 1]
    full_y_lst = full_y_lst[full_r_lst == 1]
    dict_err = {}

    if params["normalise_data"] == 3 or params["normalise_data"] == 2:
        full_final_output_lst = ut.unNormalizeData(full_final_output_lst,
                                                   params["y_men"],
                                                   params["y_std"])
        full_y_lst = ut.unNormalizeData(full_y_lst, params["y_men"],
                                        params["y_std"])

    if params["normalise_data"] == 4:
        full_final_output_lst = ut.unNormalizeData(full_final_output_lst,
                                                   params["x_men"],
                                                   params["x_std"])
        full_y_lst = ut.unNormalizeData(full_y_lst, params["x_men"],
                                        params["x_std"])

    full_loss, dict_err = sh.get_loss(file_lst,
                                      gt=full_y_lst,
                                      est=full_final_output_lst)
    # np.savetxt('trials/garb/x',np.asarray(x_lst))
    if params["sequence"] == "David":
        for u in dict_err.keys():
            seq_err = dict_err[u]
            median_result = np.median(seq_err, axis=0)
            mean_result = np.mean(seq_err, axis=0)
            print 'Epoch:', e, ' full ', u, ' median/mean error ', median_result[
                0], '/', mean_result[0], 'm  and ', median_result[
                    1], '/', mean_result[1], 'degrees.'

    else:
        median_result = np.median(full_loss, axis=0)
        mean_result = np.mean(full_loss, axis=0)
        if params["data_mode"] == "xyx":
            print 'Epoch:', e, ' full sequence median/mean error ', median_result[
                0], '/', mean_result[0], ''
        elif params["data_mode"] == "q":
            print 'Epoch:', e, ' full sequence median/mean error ', median_result[
                0], '/', mean_result[0], 'degrees.'
        else:
            print 'Epoch:', e, ' full sequence median/mean error ', median_result[
                0], '/', mean_result[0], 'm  and ', median_result[
                    1], '/', mean_result[1], 'degrees.'

    # s =pre_test+' Loss --> epoch %i | error %f'%(e,total_loss)
    # ut.log_write(s,params)
    return total_loss, median_result, mean_result, full_final_output_lst, file_lst, full_noise_lst
Пример #5
0
def test_data(sess, params, X, Y, index_list, S_list, R_L_list, F_list, e,
              pre_test, n_batches):
    dic_state = ut.get_state_list(params)
    I = np.asarray([
        np.diag([1.0] * params['n_output'])
        for i in range(params["batch_size"])
    ],
                   dtype=np.float32)
    is_test = 1

    state_reset_counter_lst = [0 for i in range(batch_size)]
    total_loss = 0.0
    total_n_count = 0.0
    for minibatch_index in xrange(n_batches):
        state_reset_counter_lst = [s + 1 for s in state_reset_counter_lst]
        (dic_state,x,y,r,f,_,state_reset_counter_lst,_)= \
            th.prepare_batch(is_test,index_list, minibatch_index, batch_size,
                                       S_list, dic_state, params, Y, X, R_L_list,F_list,state_reset_counter_lst)
        feed = th.get_feed(tracker,
                           params,
                           r,
                           x,
                           y,
                           I,
                           dic_state,
                           is_training=0)

        if mode == 'klstm':
            states,final_output,final_pred_output,final_meas_output,q_mat,r_mat,k_mat,y =\
                sess.run([tracker.states,tracker.final_output,tracker.final_pred_output,tracker.final_meas_output,
                      tracker.final_q_output,tracker.final_r_output,tracker.final_k_output,tracker.y], feed)
        else:
            states, final_output, y = \
                sess.run([tracker.states, tracker.final_output, tracker.y], feed)

        for k in states.keys():
            dic_state[k] = states[k]

        if params["normalise_data"] == 3 or params["normalise_data"] == 2:
            final_output = ut.unNormalizeData(final_output, params["y_men"],
                                              params["y_std"])
            y = ut.unNormalizeData(y, params["y_men"], params["y_std"])

        if params["normalise_data"] == 4:
            final_output = ut.unNormalizeData(final_output, params["x_men"],
                                              params["x_std"])
            y = ut.unNormalizeData(y, params["x_men"], params["x_std"])
            if mode == 'klstm':
                final_pred_output = ut.unNormalizeData(final_pred_output,
                                                       params["x_men"],
                                                       params["x_std"])
                final_meas_output = ut.unNormalizeData(final_meas_output,
                                                       params["x_men"],
                                                       params["x_std"])

        test_loss, n_count = ut.get_loss(params,
                                         gt=y,
                                         est=final_output,
                                         r=None)
        f = f.reshape((-1, 2))
        y_f = y.reshape(final_output.shape)
        r = r.flatten()
        fnames = f[np.nonzero(r)]
        # e=final_output[np.nonzero(r)]
        if mode == 'klstm':
            ut.write_est(est_file=params["est_file"] + "/kal_est/",
                         est=final_output,
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/kal_est_dif/",
                         est=np.abs(final_output - y_f),
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/kal_pred/",
                         est=final_pred_output,
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/kal_pred_dif/",
                         est=np.abs(final_pred_output - y_f),
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/meas/",
                         est=final_meas_output,
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/q_mat/",
                         est=q_mat,
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/r_mat/",
                         est=r_mat,
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/k_mat/",
                         est=k_mat,
                         file_names=fnames)
            ut.write_est(est_file=params["est_file"] + "/y_f/",
                         est=y_f,
                         file_names=fnames)
        else:
            ut.write_est(est_file=params["est_file"],
                         est=final_output,
                         file_names=fnames)
        # print test/_loss
        total_loss += test_loss * n_count

        total_n_count += n_count
        print total_loss / total_n_count
        # if (minibatch_index%show_every==0):
        #     print pre_test+" test batch loss: (%i / %i / %i)  %f"%(e,minibatch_index,n_train_batches,test_loss)
    total_loss = total_loss / total_n_count
    s = pre_test + ' Loss --> epoch %i | error %f' % (e, total_loss)
    ut.log_write(s, params)
    return total_loss