Пример #1
0
def show(uid, x, y, y_c, y_m, save=False):
    threshold = config['param'].getfloat('threshold')
    threshold_edge = config['param'].getfloat('threshold_edge')
    threshold_mark = config['param'].getfloat('threshold_mark')
    segmentation = config['post'].getboolean('segmentation')
    remove_objects = config['post'].getboolean('remove_objects')
    min_object_size = config['post'].getint('min_object_size')
    remove_fiber = config['post'].getboolean('filter_fiber')
    view_color_equalize = config['valid'].getboolean('view_color_equalize')

    fig, (ax1, ax2) = plt.subplots(2, 3, sharey=True, figsize=(10, 8))
    fig.suptitle(uid, y=1)
    ax1[1].set_title('Final Pred, P > {}'.format(threshold))
    ax1[2].set_title('Overlay, P > {}'.format(threshold))
    y_bw = y > threshold

    if view_color_equalize:
        x = clahe(x)
    ax1[0].set_title('Image')
    ax1[0].imshow(x, aspect='auto')
    markers = np.zeros_like(x)
    if segmentation:
        y, markers = partition_instances(y, y_m, y_c)
    if remove_objects:
        y = remove_small_objects(y, min_size=min_object_size)
    if remove_fiber:
        y = filter_fiber(y)
    y, cmap = _make_overlay(y)
    ax1[1].imshow(y, cmap=cmap, aspect='auto')
    # alpha
    ax1[2].imshow(x, aspect='auto')
    ax1[2].imshow(y, cmap=cmap, alpha=0.3, aspect='auto')

    ax2[0].set_title('Semantic Pred, P > {}'.format(threshold))
    ax2[0].imshow(y_bw, cmap='gray', aspect='auto')
    _, count = label(markers, return_num=True)
    ax2[1].set_title('Markers, #={}'.format(count))
    ax2[1].imshow(markers, cmap='gray', aspect='auto')
    if y_c is not None:
        ax2[2].set_title('Contour Pred, P > {}'.format(threshold_edge))
        y_c = y_c > threshold_edge
        ax2[2].imshow(y_c, cmap='gray', aspect='auto')
    plt.tight_layout()

    if save:
        dir = predict_save_folder()
        fp = os.path.join(dir, uid + '.png')
        plt.savefig(fp)
    else:
        show_figure()
Пример #2
0
def get_iou(y, y_c, y_m, gt):
    segmentation = config['post'].getboolean('segmentation')
    remove_objects = config['post'].getboolean('remove_objects')
    min_object_size = config['post'].getint('min_object_size')
    remove_fiber = config['post'].getboolean('filter_fiber')
    only_contour = config['contour'].getboolean('exclusive')

    if segmentation:
        y, markers = partition_instances(y, y_m, y_c)
    if remove_objects:
        y = remove_small_objects(y, min_size=min_object_size)
    if remove_fiber:
        y = filter_fiber(y)
    if only_contour:
        iou = iou_metric(y, label(gt > 0))
    else:
        iou = iou_metric(y, gt)
    return iou
Пример #3
0
def save_mask(uid, y, y_c, y_m):
    threshold = config['param'].getfloat('threshold')
    segmentation = config['post'].getboolean('segmentation')
    remove_objects = config['post'].getboolean('remove_objects')
    min_object_size = config['post'].getint('min_object_size')
    remove_fiber = config['post'].getboolean('filter_fiber')

    if segmentation:
        y, _ = partition_instances(y, y_m, y_c)
    if remove_objects:
        y = remove_small_objects(y, min_size=min_object_size)
    if remove_fiber:
        y = filter_fiber(y)
    idxs = np.unique(y) # sorted, 1st is background (e.g. 0)

    dir = os.path.join(predict_save_folder(), uid, 'masks')
    if not os.path.exists(dir):
        os.makedirs(dir)

    for idx in idxs[1:]:
        mask = (y == idx).astype(np.uint8)
        mask *= 255
        img = Image.fromarray(mask, mode='L')
        img.save(os.path.join(dir, str(uuid.uuid4()) + '.png'), 'PNG')
Пример #4
0
def show_groundtruth(uid, x, y, y_c, y_m, gt, gt_s, gt_c, gt_m, save=False):
    threshold = config['param'].getfloat('threshold')
    threshold_edge = config['param'].getfloat('threshold_edge')
    threshold_mark = config['param'].getfloat('threshold_mark')
    segmentation = config['post'].getboolean('segmentation')
    remove_objects = config['post'].getboolean('remove_objects')
    remove_fiber = config['post'].getboolean('filter_fiber')
    min_object_size = config['post'].getint('min_object_size')
    only_contour = config['contour'].getboolean('exclusive')
    view_color_equalize = config['valid'].getboolean('view_color_equalize')
    print_table = config['valid'].getboolean('print_table')

    fig, (ax1, ax2, ax3) = plt.subplots(3, 4, sharey=True, figsize=(12, 8))
    fig.suptitle(uid, y=1)

    y_s = y # to show pure semantic predict later

    if view_color_equalize:
        x = clahe(x)
    ax1[0].set_title('Image')
    ax1[0].imshow(x, aspect='auto')
    if segmentation :
        y, markers = partition_instances(y, y_m, y_c)
    if remove_objects:
        y = remove_small_objects(y, min_size=min_object_size)
    if remove_fiber:
        y = filter_fiber(y)
    _, count = label(y, return_num=True)
    ax1[1].set_title('Final Pred, #={}'.format(count))
    ax1[1].imshow(y, cmap='gray', aspect='auto')
    # overlay contour to semantic ground truth (another visualized view for instance ground truth, eg. gt)
    _, count = label(gt, return_num=True)
    ax1[2].set_title('Instance Lbls, #={}'.format(count))
    ax1[2].imshow(gt_s, cmap='gray', aspect='auto')
    gt_c2, cmap = _make_overlay(gt_c)
    ax1[2].imshow(gt_c2, cmap=cmap, alpha=0.7, aspect='auto')
    if only_contour: # can not tell from instances in this case
        iou = iou_metric(y, label(gt > 0), print_table)
    else:
        iou = iou_metric(y, gt, print_table)
    ax1[3].set_title('Overlay, IoU={:.3f}'.format(iou))
    ax1[3].imshow(gt_s, cmap='gray', aspect='auto')
    y, cmap = _make_overlay(y)
    ax1[3].imshow(y, cmap=cmap, alpha=0.3, aspect='auto')

    y_s = y_s > threshold
    _, count = label(y_s, return_num=True)
    ax2[0].set_title('Semantic Predict, #={}'.format(count))
    ax2[0].imshow(y_s, cmap='gray', aspect='auto')
    _, count = label(gt_s, return_num=True)
    ax2[1].set_title('Semantic Lbls, #={}'.format(count))
    ax2[1].imshow(gt_s, cmap='gray', aspect='auto')

    if y_c is not None:
        y_c = y_c > threshold_edge
        _, count = label(y_c, return_num=True)
        ax2[2].set_title('Contour Predict, #={}'.format(count))
        ax2[2].imshow(y_c, cmap='gray', aspect='auto')
        _, count = label(gt_c, return_num=True)
        ax2[3].set_title('Contour Lbls, #={}'.format(count))
        ax2[3].imshow(gt_c, cmap='gray', aspect='auto')

    _, count = label(markers, return_num=True)
    ax3[0].set_title('Final Markers, #={}'.format(count))
    ax3[0].imshow(markers, cmap='gray', aspect='auto')
    if y_m is not None:
        y_m = y_m > threshold_mark
        _, count = label(y_m, return_num=True)
        ax3[1].set_title('Marker Predict, #={}'.format(count))
        ax3[1].imshow(y_m, cmap='gray', aspect='auto')
        _, count = label(gt_m, return_num=True)
        ax3[2].set_title('Marker Lbls, #={}'.format(count))
        ax3[2].imshow(gt_m, cmap='gray', aspect='auto')

    plt.tight_layout()

    if save:
        dir = predict_save_folder()
        fp = os.path.join(dir, uid + '.png')
        plt.savefig(fp)
    else:
        show_figure()