### END SETTINGS ### # init if not os.path.exists(work_dir): os.makedirs(work_dir) with open(corpus_file) as f: sents = [[twp.split('|')[0].lower() for twp in line.split()] for line in f] embeddings = helper.char_embeddings(sents) if timestamp and start_epoch and start_iteration: errors = helper.load_errors( '%s-%d-%d.errors' % (timestamp, start_epoch, start_iteration), work_dir) load_weights = '%s-%d-%d.weights' % (timestamp, start_epoch, start_iteration) print('init previous states...') print('timestamp: ', timestamp) print('start_epoch: ', start_epoch) print('start_iteration: ', start_iteration) else: errors = [] start_epoch = 0 start_iteration = 0 timestamp = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") load_weights = None print('init new states...') print('timestamp: ', timestamp)
confusion_set = ['than', 'then'] ### END SETTINGS ### # init if not os.path.exists(work_dir): os.makedirs(work_dir) with open(corpus_file) as f: sents = [[twp.split('|')[0].lower() for twp in line.split()] for line in f] embeddings = helper.char_embeddings(sents) if timestamp and start_epoch and start_iteration: errors = helper.load_errors('%s-%d-%d.errors' % (timestamp, start_epoch, start_iteration), work_dir) load_weights = '%s-%d-%d.weights' % (timestamp, start_epoch, start_iteration) print('init previous states...') print('timestamp: ', timestamp) print('start_epoch: ', start_epoch) print('start_iteration: ', start_iteration) else: errors = [] start_epoch = 0 start_iteration = 0 timestamp = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") load_weights = None print('init new states...') print('timestamp: ', timestamp) print()
model.add(Dropout(0.5)) model.add(Dense(hidden_layer_size, 1)) model.add(Activation('sigmoid')) # compile model print('compile model...') print() model.compile(loss='binary_crossentropy', optimizer='rmsprop', class_mode="binary") # load previous states or continue with random initialization if timestamp and start_epoch: errors = helper.load_errors('%s-%d.errors' % (timestamp, start_epoch), work_dir) model.load_weights(os.path.join(work_dir, '%s-%d.weights' % (timestamp, start_epoch))) print('init previous states...') print('timestamp: ', timestamp) print('start_epoch: ', start_epoch) else: errors = [] start_epoch = 0 timestamp = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") print('init new states...') print('timestamp: ', timestamp) print() # start training print('start training...')