Пример #1
0
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 10 12:51:48 2019

@author: IST_1
"""

import helper
import pandas as pd
import numpy as np

solar = helper.pv_data(address='Lancaster, Massachusetts',
                       solar_size_kw_dc=6032,
                       tilt=23.45)
solar['year'] = 2018
total_output = solar.solar_output_kw.sum()
print(total_output)

date = pd.DataFrame()
date['year'] = solar.year
date['month'] = solar.month
date['day'] = solar.day
date['hour'] = solar.hour

power = 2400
discharge_time = 2
peak_duration = 4
assumed_duration_multiplier = peak_duration / discharge_time
#this is to calculate utilization based on the number of peak hours and discharge time
#calculated by number of peak hours / discharge_time
eff = 0.9
Пример #2
0
import pandas as pd
import pvlib
import datetime
import helper
import numpy as np
from pvlib import clearsky, atmosphere, solarposition
from pvlib.location import Location
from pvlib.iotools import read_tmy3
from pvlib.forecast import GFS, NAM, NDFD, HRRR, RAP
import ml

date = pd.date_range(start='1/1/2018', end='12/31/2018', freq='H')
solcast = pd.read_csv('new_york_solcast_data.csv')

pv = helper.pv_data(address='New York, New York',
                    solar_size_kw_dc=1000,
                    tilt=0)
dates = pd.to_datetime(solcast.Date)
solcast.Date = dates
#dirint_dni = pvlib.irradiance.dirint(solcast.Ghi,solcast.Zenith,times=pd.to_datetime(date))
solcast['Month'] = solcast.Date.dt.month
solcast['Day'] = solcast.Date.dt.day
solcast['Hour'] = solcast.Date.dt.hour
solcast = solcast.drop(columns=['Date'])
solcast = solcast.reindex(index=np.roll(solcast.index, -4)).reset_index(
    drop=True)
solcast['solar_output_kw'] = pv.solar_output_kw
solcast = solcast.drop(solcast.loc[(solcast.Dni == 0) & (solcast.Dhi == 0) &
                                   (solcast.Ghi == 0)].index)
target_output = ['Dhi', 'Ghi', 'Dni']
#solcast.loc[solcast.Azimuth<=-1] = solcast.loc[solcast.Azimuth<=-1] + 360
Пример #3
0
"""
Created on Thu Aug  8 14:37:04 2019

@author: IST_1
"""

import csv
import pandas as pd
import numpy as np
import helper

txt_file = r"s3159989.txt"
csv_file = r"solar_data.csv"

with open(txt_file, 'r') as infile, open(csv_file, 'w') as outfile:
    stripped = (line.strip() for line in infile)
    lines = (line.split(",") for line in stripped if line)
    writer = csv.writer(outfile)
    writer.writerows(lines)

df = pd.read_csv('solar_data.csv')
tilt = -20
angle_of_array = 180

aoi = np.arccos((np.cos(df['Zenith (refracted)']) * np.cos(tilt)) +
                (np.sin(df['Zenith (refracted)']) * np.sin(tilt) *
                 np.cos(df['Azimuth angle'] - angle_of_array)))

dni_df = helper.pv_data(address='New York, NY', solar_size_kw_dc=1230, tilt=20)

dni_df.direct_normal_irradiance = dni_df.direct_normal_irradiance * aoi
Пример #4
0
output = ml.load_models('entersolar_model.h5')

import importlib
importlib.reload(ml)
start_idx = 0
length = 2000
target_names = target_output
y_pred, y_true,x,mse = ml.plot_comparison(x_test_scaled,y_test,y_scaler,
                                                       target_names,output,
                                                       start_idx = start_idx,
                                                       length=length,
                                                       verbose=True)



solar_pvwatts = helper.pv_data(coordinates=(lat,lon),solar_size_kw_dc = 1750,tilt=25)

index = pd.date_range(start='1/1/'+str(2018), periods=8760, freq='60T')

solar_pvwatts.index = index

solar_pvwatts = solar_pvwatts.resample('15T').asfreq()
#solar_pvwatts = solar_pvwatts.drop(columns={'month','day','hour'})

solar_pvwatts = solar_pvwatts.interpolate()
solar_pvwatts = solar_pvwatts.reset_index(drop=True)
solar_pvwatts = solar_pvwatts[seg_start:seg_end]
segment_pvwatts = solar_pvwatts[-(int(np.ceil(len(segment)-0.9*(len(segment))))+1):-1]
plt.figure(figsize=(15,5))
#plt.plot(segment_pvwatts.index,segment_pvwatts.solar_output_kw,'bo',alpha=0.5)
plt.plot(segment_pvwatts.index,y_pred)
Пример #5
0
import ml
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import pandas as pd
import os
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Input, Dense, GRU, Embedding, LSTM
from tensorflow.python.keras.optimizers import RMSprop
from tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard, ReduceLROnPlateau
import keras

import helper
import numpy as np
solar = helper.pv_data(address = 'New York, NY', solar_size_kw_dc = 200, tilt = 20)

import pandas as pd
data = pd.read_csv('nyc_data2017.csv')
data.columns = ['year','month','day','hour','minute','dhi','dni','ghi','x','surface_albedo','xx','pressure']
data = data.drop([0,1])
data = data.reset_index(drop=True)
data = data.drop(columns=['x','xx','minute','year','month','day','hour'])
data['solar_output_kw'] = solar.solar_output_kw
#data['solar_irradiance'] = solar.solar_irradiance

#solar_prev = solar.reindex(index=np.roll(solar.index,1*24)).reset_index(drop=True)
#solar_2prev = solar.reindex(index=np.roll(solar.index,2*24)).reset_index(drop=True)
#dni_prev = data.reindex(index=np.roll(data.index,1*24)).reset_index(drop=True).dni
#dni_2prev = data.reindex(index=np.roll(data.index,2*24)).reset_index(drop=True).dni
#dhi_prev = data.reindex(index=np.roll(data.index,1*24)).reset_index(drop=True).dhi
Пример #6
0
from sklearn.ensemble import RandomForestClassifier
import numpy as np

df = pd.read_excel('File 2.xlsx')
df = df[['Device name', 'Unnamed: 8']]
df = df.drop([0, 1, 2, 3, 4, 5, 6])
df = df.rename(columns={
    'Device name': 'date',
    'Unnamed: 8': 'original_building_power_kw'
})
df.date = pd.to_datetime(df.date)
df.original_building_power_kw = df.original_building_power_kw / 1000
df['original_building_energy_kwh'] = df.original_building_power_kw / 4
df = df.sort_values(by='date')
df = df.reset_index(drop=True)
solar = helper.pv_data(address='Chirin Gita, Mexico', solar_size_kw_dc=80)
df = helper.add_solar_to_df(df, solar, 4)
#f['y'] = 'yes'
#df['target'] = df['y'].apply(lambda x: 1 if x=='yes' else 0)

df.isnull().mean().sort_values(ascending=False) * 100
#df.drop('y',axis=1,inplace=True)
df.original_building_power_kw = df.original_building_power_kw.astype(float)
df.original_building_energy_kwh = df.original_building_energy_kwh.astype(float)
df.power_post_solar_kw = df.power_post_solar_kw.astype(float)
df.energy_post_solar_kwh = df.energy_post_solar_kwh.astype(float)
#df['month'] = df.date.dt.month.astype(float)
#df['day'] = df.date.dt.day.astype(float)
#df['hour'] = df.date.dt.hour.astype(float)

corr = df.corr()