import pylab as plt import helper as hf import plot_helper as phf import argparse parser = argparse.ArgumentParser() parser.add_argument('-bs', '--bitwise_spikefile', type=str) parser.add_argument('-os', '--original_spikefile', type=str) parser.add_argument('-bmem', '--bitwise_mem_pop_file', type=str) parser.add_argument('-fn', '--filename', type=str) args = parser.parse_args() original_spikefile = args.original_spikefile original_times, original_senders = hf.read_spikefile(original_spikefile) bitwise_spikefile = args.bitwise_spikefile bitwise_times, bitwise_senders = hf.read_spikefile(bitwise_spikefile) bitwise_mem_pop = np.loadtxt(args.bitwise_mem_pop_file) phf.latexify(columns=2) excolor = 'C0' incolor = 'C1' fig = plt.figure() gs0 = gridspec.GridSpec(2, 2) gs0.update(left=0.1, right=0.97, top=0.97, bottom=0.1, hspace=0.25) gs1 = gridspec.GridSpecFromSubplotSpec(7, 1, subplot_spec=gs0[0, :])
sns.xkcd_rgb["denim blue"], sns.xkcd_rgb["medium green"], sns.xkcd_rgb["pale red"] ] plt.figure() current_palette = sns.color_palette(flatui) sns.palplot(current_palette) sns.set_palette(current_palette) plt.savefig('palette.png') plt.close() args = parser.parse_args() excolor = 'C0' incolor = 'C1' statistical_spikefile = args.statistical_spikefile statistical_times, statistical_senders = hf.read_spikefile( statistical_spikefile) bitwise_spikefile = args.bitwise_spikefile bitwise_times, bitwise_senders = hf.read_spikefile(bitwise_spikefile) statistical_weights = hf.read_weightfile(args.statistical_weightfile) bitwise_weights = hf.read_weightfile(args.bitwise_weightfile) fig = plt.figure(figsize=(9, 8)) gs0 = gridspec.GridSpec(2, 2) gs0.update(left=0.1, right=0.97, top=0.97, bottom=0.06, hspace=0.15) gs1 = gridspec.GridSpecFromSubplotSpec(7, 1, subplot_spec=gs0[0, :]) ax01 = plt.subplot(gs1[:5, 0]) ax02 = plt.subplot(gs1[5:, 0])
import argparse import mpl_toolkits.axes_grid.inset_locator parser = argparse.ArgumentParser() parser.add_argument('-cs', '--comp_spikefile', type=str) parser.add_argument('-bs', '--bitwise_spikefile', type=str) parser.add_argument('-cw', '--comp_weightfile', type=str) parser.add_argument('-bw', '--bitwise_weightfile', type=str) parser.add_argument('-fn', '--filename', type=str) args = parser.parse_args() comp_spikefile = args.comp_spikefile comp_times, comp_senders = hf.read_spikefile(comp_spikefile) bitwise_spikefile = args.bitwise_spikefile bitwise_times, bitwise_senders = hf.read_spikefile(bitwise_spikefile) comp_weights = hf.read_weightfile(args.comp_weightfile) bitwise_weights = hf.read_weightfile(args.bitwise_weightfile) bin_ms = 5. phf.latexify(columns=2) excolor = 'C0' incolor = 'C1' fig = plt.figure() gs0 = gridspec.GridSpec(2, 2) gs0.update(left=0.1, right=0.97, top=0.97, bottom=0.1, hspace=0.25)
gamma_peak = [] N_grps = [] c_high = 'C5' c_low = 'C6' for rep, (spk_fl, grp_stat_fl, con_fl) in enumerate( zip(args.spikelist, args.groupstatlist, args.connectivitylist)): connectivity = pd.read_json(con_fl) connecitivty_e = connectivity.loc[connectivity['pre'] < 800] connecitivty_e_e = connectivity.loc[connectivity['post'] < 800] connecitivty_e_e['bin_w'] = pd.cut(connecitivty_e_e['weight'], np.arange(0, 10.5, 0.5)) times, senders = hf.read_spikefile(spk_fl) exc_times, exc_sender, inh_times, inh_sender = hf.split_in_ex( times, senders) exc_rate, exc_bins = hf.bin_pop_rate(exc_times, exc_sender, bin_ms) exc_Pxx, exc_freqs = mlab.psd(exc_rate - np.mean(exc_rate), NFFT=NFFT, Fs=1000. / (exc_bins[1] - exc_bins[0]), noverlap=noverlap) exc_Pxx_tab[:, rep] = exc_Pxx idx = np.argmax(exc_Pxx[exc_freqs > 20]) cut_freqs = exc_freqs[exc_freqs > 20] max_freq = cut_freqs[idx] if max_freq < 50: if table_low is None: table_low = pd.pivot_table(connecitivty_e_e,