Пример #1
0
def get_histogram_bins(nb_bins=NB_BINS):
    name = 'all_bins'
    try:
        bins = get_histogram_bins.BINS
    except AttributeError:
        try:
            print('Loading histogram bins.')
            bins = load_variables(name)
        except FileNotFoundError:
            print('Computing histogram bins.')
            ext = first_layer_extractor
            st_desc, _, _ = homogenized_description(ext, homogenize=False)
            all_val = concatenate_all(st_desc)
            all_val[np.isnan(all_val)] = 0

            length = all_val.shape[0]
            if type(nb_bins) == int:
                nb_bins = nb_bins * np.ones(length)

            bins = [[] for k in range(length)]
            for k in range(length):
                val = all_val[k, :]
                bins[k] = empirical_bins(val, nb_bins=nb_bins[k])
            save_variables(name, bins)
    get_histogram_bins.BINS = bins
    return bins
Пример #2
0
def get_small_design(name):
    save_name = 'small_design_' + name
    try:
        design, labels, ids, explanation = load_variables(save_name)
    except FileNotFoundError:
        design, labels, ids, explanation = get_design(name)
        design, explanation = small_design(design, labels, explanation)
        save_variables(save_name, [design, labels, ids, explanation])
    return design, labels, ids, np.array(explanation)
Пример #3
0
def get_design(name):
    save_name = 'design_' + name    
    try:
        design, labels, ids, explanation = load_variables(save_name)
    except FileNotFoundError:
        st_data, labels, ids, explanation = get_layer(name)
        design, explanation = cast_design(st_data, explanation)
        save_variables(save_name, [design, labels, ids, explanation])
    return design, labels, ids, np.array(explanation)
Пример #4
0
def get_center(event):
    name = event[1]
    try:
        center, mean, std = load_variables(name)
    except FileNotFoundError:
        try:
            st_data, _, _, _ = load_variables('preprocess')
        except FileNotFoundError:
            extractor = preprocess_extractor
            explanation = FACE_PARAMETERIZATION
            st_data, labels, ids = homogenized_description(extractor)
            save_variables('preprocess', [st_data, labels, ids, explanation])
        center, mean, std = perform_clustering(st_data, event)
        save_variables(name, [center, mean, std])
    return center, mean, std
Пример #5
0
def get_layer(name):
    try:
        data, labels, ids, explanation = load_variables(name)
    except FileNotFoundError:
        if name == 'face_parameterization':
            extractor = face_parameterization_extractor
            explanation = FACE_PARAMETERIZATION
        elif name == 'preprocess':
            extractor = preprocess_extractor
            explanation = FACE_PARAMETERIZATION
        elif name == 'event':
            extractor = event_extractor
            explanation = EVENT
        elif name == 'video_response':
            extractor = video_response_extractor
            explanation = VIDEO_RESPONSE
        elif name == 'pattern_response':
            extractor = pattern_response_extractor
            explanation = PATTERN_RESPONSE            
        elif name == 'patterns_response':
            extractor = patterns_response_extractor
            explanation = PATTERNS_RESPONSE            
        elif name == 'first_layer':
            extractor = first_layer_extractor
            explanation = FIRST_LAYER
        elif name == 'second_layer':
            extractor = second_layer_extractor
            explanation = SECOND_LAYER
        elif name == 'assignation':
            extractor = assignation_extractor
            explanation = ASSIGNATION
        elif name == 'histogram':
            extractor = histogram_extractor
            explanation = HISTOGRAM
        elif name == "motor_behaviors":
            extractor = motor_behaviors_extractor
            explanation = MOTOR_BEHAVIORS
        else:
            print(name, 'not implemented yet')
            raise ValueError
        data, labels, ids = homogenized_description(extractor)
        save_variables(name, [data, labels, ids, explanation])
    return data, labels, ids, explanation
Пример #6
0
def get_standard_design(preprocess = False, proba = False, small = False):
    save_name = 'st_design'
    if proba:
        if preprocess:
            save_name = 'st_design_proba'
        elif small:
            save_name = 'small_st_design_proba'
        else:
            save_name = 'st_design_all_proba'
        try:
            design, labels, ids, explanation = load_variables(save_name)
        except FileNotFoundError:
            design, labels, ids, explanation = get_standard_design(
                    preprocess = preprocess, proba = False, small = small)
            design = proba_design(design)
            save_variables(save_name, [design, labels, ids, explanation])
    else:
        if preprocess:
            save_name = 'st_design'
            try:
                design, labels, ids, explanation = load_variables(save_name)
            except FileNotFoundError:
                design, labels, ids, explanation = get_standard_design(
                        preprocess = False, proba = False, small = False)
                design,explanation=preprocess_design(design,labels,explanation)
                save_variables(save_name, [design, labels, ids, explanation])            
        elif small:
            save_name = 'small_st_design'
            try:
                design, labels, ids, explanation = load_variables(save_name)
            except FileNotFoundError:
                design, labels, ids, explanation = get_standard_design(
                        preprocess = False, proba = False, small = False)
                design, explanation = small_design(design, labels, explanation)
                save_variables(save_name, [design, labels, ids, explanation])
        else:
            save_name = 'st_design_all'
            try:
                design, labels, ids, explanation = load_variables(save_name)
            except FileNotFoundError:
                names = ['second_layer', 'motor_behaviors']
                designs, explanations = [], []
                for name in names:
                    design, labels, ids, explanation = get_design(name)
                    designs.append(design)
                    explanations.append(explanation)
                design, explanation = concatenate_design(designs, explanations)
                save_variables(save_name, [design, labels, ids, explanation])
    return design, labels, ids, explanation