shuffle(ld) numTrainEx = len(listdir(indir+"tempTrain/")) trainImages = np.zeros((numTrainEx,timeSteps,1,wSize,wSize),dtype=np.float) trainTargets = np.zeros((numTrainEx,outsize),dtype=np.float) trainCIDs = [] added = 0 #keep track of how many images have been added count = 0 while added < numTrainEx: x = ld[count] if x.find(".sdf") > -1: try: try: CID = x[:x.find(".sdf")] image = helperFuncs.processImage(CID,trainFolder,binarize,blur,padding,size,noise=True) #mi.imsave("../evaluation/"+str(CID)+".jpg",image) subprocess.call("rm "+trainFolder+x,shell=True) image = im2window(image,wSize,stride) trainImages[added,:,:,:,:] = image trainTargets[added] = targets[CID] trainCIDs.append(CID) added+=1 print added except (IOError,ValueError) as e: print e except (KeyError, ValueError) as e: subprocess.call("rm "+trainFolder+x,shell=True) #This means this molecule was too big count+=1 if count > len(ld)-1:
numTrainEx = len(listdir(indir+"tempTrain/")) trainImages = np.zeros((numTrainEx,1,size,size),dtype=np.float) trainTargets = np.zeros((numTrainEx,outsize),dtype=np.float) trainCIDs = [] added = 0 count = 0 while added < numTrainEx: x = ld[count] print x, added if x.find(".sdf") > -1: try: try: CID = x[:x.find(".sdf")] image = helperFuncs.processImage(CID,trainFolder,binarize,blur,padding,size,noise=True) subprocess.call("rm "+trainFolder+x,shell=True) trainImages[added,0,:,:] = image trainTargets[added] = targets[CID] trainCIDs.append(CID) added+=1 except (IOError,ValueError) as e: print e except (KeyError, ValueError) as e: subprocess.call("rm "+trainFolder+x,shell=True) #This means this molecule was too big count+=1 if count > len(ld)-1: count = 0 ld = listdir(trainFolder) while len(ld) == 0:
print x try: CID = x print "reading in" image = io.imread("/home/test/usan/" + x, as_grey=True) image = minusOnes(image) print "numpying" image = np.array(image) #image = convertIt(image) print "resizing" print image.shape image = helperFuncs.processImage(None, "/", True, 0.3, "random", 300, noise=True, image=image) # image = myResize(image,imdim) #image = putInSize(image,imdim) # image = np.where(image >0.05, 1.,0) # image = filters.gaussian_filter(image,0.2) # image = 0.05*np.random.rand(image.shape[0], image.shape[1]) + image #image = filters.gaussian_filter(image,0.2) #print "binarizing" print image.shape #image = np.where(image>0.2,1,0) # for countzor in range(0,image.shape[0]):
ld = listdir("/home/test/usan/") images = np.zeros((1,1,imdim,imdim),dtype=np.float) for x in ld: print x try: CID = x print "reading in" image = io.imread("/home/test/usan/"+x,as_grey=True) image = minusOnes(image) print "numpying" image = np.array(image) #image = convertIt(image) print "resizing" print image.shape image = helperFuncs.processImage(None,"/",True,0.3,"random",300,noise=True,image=image) # image = myResize(image,imdim) #image = putInSize(image,imdim) # image = np.where(image >0.05, 1.,0) # image = filters.gaussian_filter(image,0.2) # image = 0.05*np.random.rand(image.shape[0], image.shape[1]) + image #image = filters.gaussian_filter(image,0.2) #print "binarizing" print image.shape #image = np.where(image>0.2,1,0) # for countzor in range(0,image.shape[0]): # print image[countzor,:] # stop=raw_input("") #image = np.where(image > 0.1,1.0,0.0)