# Size off the data chunk size = 100000 ##### Run Program # Wait for the MySQL server to start containerWait() try: # Connect to MySQL and get cursor db_mysql, cur1 = connectMySQL(buffered=True) # Check timestamps if managementCompare('last_location_insert', 'last_predict_clusters', cur=cur1, db_mysql=db_mysql) or managementCompare( 'last_kmeans_model', 'last_predict_clusters', cur=cur1, db_mysql=db_mysql): # Get second cursor cur2 = db_mysql.cursor() # Load the kmeans model kmeanModel = pickle.load(open(path_model, 'rb')) ##### Get All Datapoints Tp Predict Clusters # Select statement
# Path for the plot path_model = 'build/KMeans_Model.p' ##### Run Program # Wait for the MySQL server to start containerWait() try: # Connect to MySQL and get cursor db_mysql, cur = connectMySQL() # Check timestamps if managementCompare('last_predict_clusters', 'last_cluster_table', cur=cur, db_mysql=db_mysql): # Load the kmeans model kmeanModel = pickle.load(open(path_model, 'rb')) # Get the centers for the clusters kmeanCenters = kmeanModel.cluster_centers_ ##### Map Clusters To Cities # Clusters to city names dict_cities = mapClustersToCities(kmeanCenters) # Create a dataframe for the cities df_cities = pd.DataFrame.from_dict(dict_cities, orient='index')
# Chunk size for input to database size = 100000 ##### Run Program # Wait for the MySQL server to start containerWait() try: # Connect to MySQL and get cursor db_mysql, cur = connectMySQL() # Check timestamps if managementCompare('last_cluster_table', 'last_rides_table', cur=cur, db_mysql=db_mysql): ##### Get The Point And City Dataframes # SQL query sql_query = 'SHOW columns FROM city_clusters' # Get column names cur.execute(sql_query) columns = [i[0] for i in cur.fetchall()] # SQL query sql_query = 'SELECT * FROM city_clusters' # Get dataframe
# Wait for the MySQL server to start containerWait() try: # Connect to ZODB root = connectZEO() # Connect to MySQL and get cursor db_mysql, cur = connectMySQL() # Check timestamps if managementCompare('last_enrich_cluster_table', 'last_osm_download', cur=cur, db_mysql=db_mysql): ##### Iterate Over All Cities And Download OSM-Graph # SQL query sql_query = 'SELECT cluster_id FROM city_clusters WHERE city_analyse=1' # Execute the query cur.execute(sql_query) cluster_ids = cur.fetchall() # Iterate over all cities for cluster_id in cluster_ids: # Extract the data