Пример #1
0
    def test_additionWF(self):
        n1, l1 = 1, 5
        n2, l2 = 2, 3

        dr = 0.001
        r = np.arange(dr, 6 + dr, dr)

        f1 = self._phiWF(n1, l1, r) / np.exp(0.5 * r**2)
        f2 = self._phiWF(n2, l2, r) / np.exp(0.5 * r**2)
        f1f2 = f1 * f2

        Integrals_ = _RadialTwoBodyDecoupled()
        aux = 0.0 * r
        print("\nSeries of B(n{} l{},n{} l{}, p)::".format(n1, l1, n2, l2))
        for p in range(0, n1 + n2 + 1):
            Bp = Integrals_._B_coeff(n1, l1, n2, l2, p)
            print("  B(nl(1){},{} nl(2){},{}, p{})={}".format(
                n1, l1, n2, l2, p, Bp))
            aux += Bp * (r**(2 * p + l1 + l2))

        aux /= np.exp(r**2)
        import matplotlib.pyplot as plt

        plt.plot(r, f1, 'r--', label='f1({})'.format((n1, l1)))
        plt.plot(r, f2, 'b--', label='f2({})'.format((n2, l2)))
        plt.plot(r, f1f2, label='Analytical f1*f2')
        plt.plot(r, aux, label='f1*f2 from sum')
        plt.title("Checking the product of two radial wave functions [{}, {}]".
                  format(shellSHO_Notation(n1, l1), shellSHO_Notation(n2, l2)))
        plt.xlabel("r")
        plt.legend()
        plt.show()

        diff = sum((aux - f1f2)) * dr
        self.assertAlmostEqual(diff, 0.0, msg="Not equal", delta=1e-8)
def valenceSpaceShellNames(valence_space, l_ge_10=False):
    """
    Join the SHO major shells defining the valence space (without sense care).
        Arg:
    :valence_space Quantum numbers array (Antoine format)
    :l_ge_10 <bool> [default=False] format for l>10.
    """
    _space = []
    states_accepted = 0
    for shell, qqnn_shell in valenceSpacesDict_l_ge10.items():

        aux = [(sp, shellSHO_Notation(*readAntoine(sp, True)))
               for sp in qqnn_shell]
        aux = [(sho_st, sp in valence_space) for sp, sho_st in aux]
        aux = dict(aux)
        if not False in aux.values():
            _space.append(shell)
            states_accepted += len(aux)
        elif True in aux.values():
            aux = dict(filter(lambda x: x[1], aux.items())).keys()
            _space.append('({}: {})'.format(shell, list(aux)))
            states_accepted += len(aux)

        if states_accepted == len(valence_space):
            break

    return list(set(_space))
Пример #3
0
 def shellState(self):
     return shellSHO_Notation(self.n, self.l)
Пример #4
0
 
 dr = 0.001
 b_length = 1.2
 
 N_min = 6
 N_max = 7
 NZ_states = getStatesAndOccupationUpToLastOccupied(N_max, N_min)
 NZ_states = getStatesAndOccupationOfFullNucleus(N_min + 2, N_max, N_min)
 
 A = 0
 A_prev = max(1, 2*N_min + 1)
 Z = 0
 r = np.arange(0, 6, dr)
 rOb = r / b_length
 for spss, z, n in NZ_states:
     spss = shellSHO_Notation(*spss)
     Z += z
     A = A_prev + z + n
     for a_ in range(A_prev, A + 1):
         #A += 2*a
          
         aux = _RadialDensityDependentFermi()
         
         den = aux._FermiDensity(a_, rOb, z) 
         # den = aux._auxFunction(rOb, 6, A, 1/3)
         den /= np.exp(rOb**2)
         # den /= np.exp((7/3) * rOb**2)
         print(a_,'(', spss, ') integral=', 
               b_length**(-3) * sum(den* np.power(r, 2))*dr)
             ## 4pi factor cancels with the normalization of the density
             ## but _FermiDensity dont have factor 1/(4pi * b^3)