def load(self, epoch_num):
     load_path = self.get_path(epoch_num)
     self.language_model = torch_utils.load_model(load_path).cuda()
     self.init_trainer()  # Need to reset optimizer
config['beam_size'] = 5
config['log_path'] = 'logs.txt'
config['save_directory'] = 'logs/squad_saved_data'
config['use_pretrained_embeddings'] = True
config['pretrained_embeddings_path'] = 'datasets/squad/word_embeddings.npy'
config['finetune_embeddings'] = False
config['load_model'] = False
config['gpu_mode'] = True
config[
    'load_path'] = 'logs/squad_saved_data/model_6.pyt7'  # CHANGE THIS TO WHATEVER PATH YOU WANT

io_utils.check_dir('logs/squad_saved_data')

language_model = LanguageModel(config)
if config['load_model']:
    language_model = torch_utils.load_model(config['load_path'])

language_model.cuda()
language_wrapper = LanguageWrapper(language_model,
                                   language_model_loader.get_vocab())
language_trainer = LanguageTrainer(config, language_wrapper,
                                   language_model_loader)

for i in range(0, 15):
    loss, accuracy, predictions = language_trainer.train(epoch_num=i)

    if i % 3 == 2:
        predictions = language_trainer.predict(
            dataset_type=constants.DATASET_TEST,
            epoch_num=10,
            max_length=20,
Пример #3
0
from data_loaders.language_model_loader_truncate import LanguageModelLoaderTruncate
from models.language_model import LanguageModel
from models.language_trainer import LanguageTrainer
from models.language_wrapper import LanguageWrapper
from helpers import constants
import torch
from helpers import torch_utils, utils
from torch.autograd import variable

dataset_path = 'datasets/newsqa'
load_path = 'logs/squad_saved_data_truncated/model_2.pyt7'

language_model_loader = LanguageModelLoaderTruncate(
    dataset_path, tokenizer_type=constants.TOKENIZER_TAB)
language_model = torch_utils.load_model(load_path).cuda()
language_model.config['save_directory'] = 'logs/newsqa_saved_data'

language_wrapper = LanguageWrapper(language_model,
                                   language_model_loader.get_vocab())
language_trainer = LanguageTrainer(language_model.config, language_wrapper,
                                   language_model_loader)

#test_predictions = language_trainer.predict(dataset_type=constants.DATASET_TEST,
#            epoch_num=10, max_length=20)
#dev_predictions = language_trainer.predict(dataset_type=constants.DATASET_VALIDATION,
#            epoch_num=10, max_length=10)
train_predictions = language_trainer.predict(
    dataset_type=constants.DATASET_TRAIN, epoch_num=10, max_length=10)

utils.save_lines(
    train_predictions,
from models.language_model import LanguageModel
from helpers import torch_utils

config = {}
config['vocab_size'] = 12
config['embedding_size'] = 20
config['hidden_size'] = 50
config['num_layers'] = 1
config['dropout'] = 0.0
config['batch_first'] = True

model = LanguageModel(config)

torch_utils.save_model(model, path='test.model')
model = torch_utils.load_model(path='test.model')