import matplotlib.pyplot as plt
from helpers import load_image, save_image, my_imfilter

resultsDir = '..' + os.sep + 'results'
if not os.path.exists( resultsDir ):
    os.mkdir( resultsDir )

test_image = load_image('../data/cat.bmp')
test_image = rescale(test_image, 0.7, mode='reflect' , multichannel = True)

'''
Identity filter
This filter should do nothing regardless of the padding method you use.
'''
identity_filter = np.asarray([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.float32)
identity_image = my_imfilter(test_image, identity_filter)
plt.imshow(identity_image)
done = save_image('../results/identity_image.jpg', identity_image)


'''
Small blur with a box filter
This filter should remove some high frequencies.
'''
blur_filter = np.ones((3, 3), dtype=np.float32)
blur_filter /= np.sum(blur_filter, dtype=np.float32)  # making the filter sum to 1
blur_image = my_imfilter(test_image, blur_filter)
plt.imshow(blur_image)
done = save_image(resultsDir + os.sep + 'blur_image.jpg', blur_image)

Пример #2
0
import matplotlib.pyplot as plt
from helpers import load_image, save_image, my_imfilter

resultsDir = '..' + os.sep + 'results'
if not os.path.exists(resultsDir):
    os.mkdir(resultsDir)

test_image = load_image('../data/cat.bmp')
test_image = rescale(test_image, 0.7, mode='reflect')
'''
Identity filter
This filter should do nothing regardless of the padding method you use.
'''
identity_filter = np.asarray([[0, 0, 0], [0, 1, 0], [0, 0, 0]],
                             dtype=np.float32)
identity_image = my_imfilter(test_image, identity_filter)
plt.imshow(identity_image)
done = save_image('../results/identity_image.jpg', identity_image)
'''
Small blur with a box filter
This filter should remove some high frequencies.
'''
blur_filter = np.ones((3, 3), dtype=np.float32)
blur_filter /= np.sum(blur_filter,
                      dtype=np.float32)  # making the filter sum to 1
blur_image = my_imfilter(test_image, blur_filter)
plt.imshow(blur_image)
done = save_image(resultsDir + os.sep + 'blur_image.jpg', blur_image)
'''
Large blur
This blur would be slow to do directly, so we instead use the fact that Gaussian blurs are separable and blur sequentially in each direction.