def _contains(self, rule, value, dataset): # if model contains the values, then the current seed should be generated using sibling-matches subset = helpers.subset_from_superset(rule.values, [value]) if len(subset) > 0: # subset will never be larger then 1 m = rule.matches if m: return set([dataset.matches(m)]) return None
def contains(self, possible_values, pick_random=True, strict=False): if self._is_list(): subset = helpers.subset_from_superset(possible_values, self.raw_data) if pick_random: return self.random(subset) else: return list(subset) return list()
def excludes(self, possible_values, pick_random=True, strict=False): if self._is_list(): # filter array dataset = set(self.raw_data) subset = helpers.subset_from_superset(possible_values, self.raw_data) new_dataset = dataset.difference(subset) if pick_random: return self.random(new_dataset) else: return list(new_dataset) return list()
def _missing(self, rule, value, dataset): # if model contains the values, then the current seed should be generated using sibling-matches # print "Missing Checking Value: " + value # print "Missing Checking Against: " # print rule.values subset = helpers.subset_from_superset(rule.values, [value]) # value matches check values if len(subset) is 0: # subset will never be larger then 1 # then generate based on the maches algo m = rule.matches if m: return set([dataset.matches(m)]) return None