Пример #1
0
 def compute_cell_volume(self):
     """
     computes cell volume in in real pixel size using the cell mask
     """
     cell_mask = self.get_cell_mask()
     height_map = self.adjust_height_map()
     cell_volume = height_map[np.where(cell_mask[:] == 1)].sum()
     if (len(self.get_multiple_nucleus_centroid())) > 1:
         return cell_volume / len(
             self.get_multiple_nucleus_centroid()) * helpers.volume_coeff()
     else:
         return cell_volume * helpers.volume_coeff()
Пример #2
0
    def compute_density_per_quadrant(self,
                                     mtoc_quad,
                                     quadrant_mask,
                                     quadrants_num=4) -> np.ndarray:
        """
        compute volumic density per quadrant;
        return an array of values of density paired with the MTOC presence flag (0/1)
        """
        IF = self.compute_cytoplasmic_intensities()
        height_map = self.adjust_height_map(cytoplasm=True)
        density_per_quadrant = np.zeros((quadrants_num, 2))
        # mark the MTOC quadrant
        density_per_quadrant[mtoc_quad - 1, 1] = 1
        for quad_num in range(quadrants_num):
            height = np.sum(height_map[quadrant_mask == quad_num + 1])
            quadrant_volume = height * helpers.volume_coeff()
            density_per_quadrant[quad_num, 0] = np.sum(
                IF[quadrant_mask == (quad_num + 1)]) / quadrant_volume

        if density_per_quadrant[:, 1].sum() != 1.0:
            raise (RuntimeError,
                   "error in the MTOC quadrant detection for image %s" %
                   self._path)

        return density_per_quadrant
Пример #3
0
    def compute_density_per_quadrant(self,
                                     mtoc_quad,
                                     quadrant_mask,
                                     quadrants_num=4) -> np.ndarray:
        """
        compute volumic density per quadrant;
        return an array of values of density paired with the MTOC presence flag (0/1)
        """
        volume_coeff = helpers.volume_coeff()
        height_map = self.adjust_height_map(cytoplasm=True)
        spots = self.get_cytoplasmic_spots()
        density_per_quadrant = np.zeros((quadrants_num, 2))
        for spot in spots:
            spot_quad = quadrant_mask[spot[1], spot[0]]
            if spot_quad == 0: continue
            density_per_quadrant[spot_quad - 1, 0] += 1

        # mark the mtoc quadrant
        density_per_quadrant[mtoc_quad - 1, 1] = 1
        for quad_num in range(quadrants_num):
            quadrant_volume = np.sum(
                height_map[quadrant_mask == quad_num + 1]) * volume_coeff
            density_per_quadrant[quad_num,
                                 0] = density_per_quadrant[quad_num,
                                                           0] / quadrant_volume

        if density_per_quadrant[:, 1].sum() != 1.0:
            raise (RuntimeError,
                   "error in the MTOC quadrant detection for image %s" %
                   self._path)

        return density_per_quadrant
Пример #4
0
 def compute_cell_volume(self):
     """
     compute cell volume in real pixel size using the cell mask
     """
     cell_mask = self.get_cell_mask()
     height_map = self.adjust_height_map()
     cell_volume = height_map[cell_mask == 1].sum()
     return cell_volume * helpers.volume_coeff()
Пример #5
0
    def compute_peripheral_cell_volume(self):
        """
        computes cell volume in in real pixel size using the cell mask
        """
        peripheral_fraction_threshold = constants.analysis_config[
            'PERIPHERAL_FRACTION_THRESHOLD']
        cell_mask_dist_map = self.get_cell_mask_distance_map()
        peripheral_binary_mask = (cell_mask_dist_map > 0) & \
                                 (cell_mask_dist_map <= peripheral_fraction_threshold).astype(int)
        cell_mask = self.get_cell_mask()
        height_map = self.adjust_height_map()
        height_map_periph = np.multiply(height_map, peripheral_binary_mask)
        peripheral_cell_volume = height_map_periph[np.where(
            cell_mask[:] == 1)].sum()

        if (len(self.get_multiple_nucleus_centroid())) > 1:
            return peripheral_cell_volume / len(
                self.get_multiple_nucleus_centroid()) * helpers.volume_coeff()
        else:
            return peripheral_cell_volume * helpers.volume_coeff()
Пример #6
0
 def compute_peripheral_cell_volume(self, peripheral_threshold):
     """
     compute volume in the periphery in real pixel size using the cell mask
     """
     cell_mask_dist_map = self.get_cell_mask_distance_map()
     peripheral_binary_mask = (
         (cell_mask_dist_map > 0) &
         (cell_mask_dist_map <= peripheral_threshold)).astype(int)
     height_map = self.adjust_height_map()
     height_map_periph = np.multiply(height_map, peripheral_binary_mask)
     peripheral_cell_volume = height_map_periph.sum(
     ) * helpers.volume_coeff()
     return peripheral_cell_volume
Пример #7
0
 def compute_cytoplasmic_volume(self):
     """compute volume of the cytoplasm in in real pixel size using cytoplasm mask and adjusted height map"""
     cytoplasm_mask = self.get_cytoplasm_mask()
     height_map = self.adjust_height_map()
     cytoplasm_volume = height_map[cytoplasm_mask == 1].sum()
     return cytoplasm_volume * helpers.volume_coeff()
Пример #8
0
 def compute_nucleus_volume(self):
     """compute nucleus volume in in real pixel size using nucleus mask"""
     nucleus_mask = self.get_nucleus_mask()
     height_map = self.adjust_height_map()
     nucleus_volume = height_map[nucleus_mask == 1].sum()
     return nucleus_volume * helpers.volume_coeff()