def main(img): img1 = img cloth_path = [] with open('clothes_match_labeled_data.txt', encoding='gbk', errors='ignore') as f: for line in f: name = line.split(':')[0] path = 'my_training_shirts/' + name + '.jpg' cloth_path.append(path) cloth_path = cloth_path[1:] similary_list = [] for img2 in cloth_path: print('calculating the similarity with ' + img2) sim1 = img_similarity(img1, img2) # sim2 = compare_image(img1, img2) sim3 = histsimilar.calc_similar_by_path(img1, img2) similary = 0.4 * sim1 + 0.6 * sim3 similary_list.append(similary) similary_dic = {}.fromkeys(cloth_path) i = 0 for key, value in similary_dic.items(): similary_dic[key] = similary_list[i] i += 1 best_img = max(similary_dic, key=similary_dic.get) best_img = best_img.split('/')[-1] best_img = best_img.split('.')[0] return best_img
def pic_operate(case_name, is_update, size, drive): name = case_name pic_drive = drive pic_size = copy.deepcopy(size) pic_expect_path = path.get_multi_platform(PATH_PIC + "/pic/expect/%s.png"%name) pic_fact_path = path.get_multi_platform(PATH_PIC + "/pic/fact/%s.png"%name) result_path = path.get_multi_platform(PATH_PIC + "/result/%s.png"%name) pic_size[2] = pic_size[2] + pic_size[0] pic_size[3] = pic_size[3] + pic_size[1] logger.info("截图起点坐标: " + str(pic_size[0]) + "," + str(pic_size[1]) + " 截图终点坐标: " + str(pic_size[2]) + "," + str(pic_size[3])) global similar_rate if is_update == "Y": pic_drive.get_screenshot_as_file(pic_expect_path) Image.open(pic_expect_path).crop(pic_size).save(pic_expect_path) similar_rate = 100 elif is_update == "N": pic_drive.get_screenshot_as_file(pic_fact_path) Image.open(pic_fact_path).crop(pic_size).save(pic_fact_path) pic0 = Image.open(pic_expect_path) pic1 = Image.open(pic_fact_path) pic_joint(pic0, pic1).save(result_path) if is_reCompare == 0: #上报图片所属用例 if result.case_pic.has_key(exe_status.exe_case_title): result.case_pic[exe_status.exe_case_title] += name + ".png" + "|" else: result.case_pic[exe_status.exe_case_title] = name + ".png" + "|" similar_rate = histsimilar.calc_similar_by_path(pic_fact_path,pic_expect_path)*100 return similar_rate
EPSILON = 1e-08 STYLE_SCALE = 1.0 ITERATIONS = 2101 initial_noiseblend = 1.0 VGG_PATH = 'imagenet-vgg-verydeep-19.mat' POOLING = 'max' img_cor = [] content = './images/ex5.jpg' styles = [] #Get all the style as a array for i in range(1, 18): img_cor.append([ './styles/%d.jpg' % i, histsimilar.calc_similar_by_path(content, './styles/%d.jpg' % i) ]) img_cor.sort(key=lambda x: x[1], reverse=True) #Take the possible related style styles.append(img_cor[0]) print(img_cor[0][0]) styles.append(img_cor[1]) print(img_cor[1][0]) def main(): content_image = imread(content) style_images = [imread(style[0]) for style in styles] #Accepted all style style_blend_weights = [style[1] for style in styles] target_shape = content_image.shape
cloth_path = [] with open('clothes_match_labeled_data.txt', encoding='gbk', errors='ignore') as f: for line in f: name = line.split(':')[0] path = '/my_training_shirts/' + name + '.jpg' cloth_path.append(path) cloth_path = cloth_path[1:] similary_list = [] for img2 in cloth_path: print('calculating the similarity with ' + img2) sim1 = img_similarity(img1, img2) # sim2 = compare_image(img1, img2) sim3 = histsimilar.calc_similar_by_path(img1, img2) similary = 0.4 * sim1 + 0.6 * sim3 similary_list.append(similary) similary_dic = {}.fromkeys(cloth_path) i = 0 for key, value in similary_dic.items(): similary_dic[key] = similary_list[i] i += 1 best_img = max(similary_dic, key=similary_dic.get) print(best_img) # cv2.namedWindow("new", cv2.WINDOW_NORMAL) # cv2.imshow("new", img1) # cv2.waitKey() # img2_path = '4.jpg'
def similar(): #path = r'testpic/TEST%d/%d.JPG' for i in xrange(1, 10): print 'test_case_%d: %.3f%%'%(i, \ histsimilar.calc_similar_by_path('testpic/TEST%d/%d.JPG'%(i, 1), 'testpic/TEST%d/%d.JPG'%(i, 2))*100)
import os import sys import numpy as np import scipy.io import scipy.misc import tensorflow as tf import histsimilar COR = [] OUTPUT_DIR = './outputs/' STYLE_IMAGE = [] CONTENT_IMAGE = './images/ex1.jpg' for i in range(1, 17): COR.append([ './styles/%d.jpg' % i, histsimilar.calc_similar_by_path(CONTENT_IMAGE, './styles/%d.jpg' % i) ]) COR.sort(key=lambda x: x[1], reverse=True) STYLE_IMAGE.append(COR[0][0]) print(COR[0][0]) STYLE_IMAGE.append(COR[1][0]) print(COR[1][0]) if COR[1][1] > 0.4: STYLE_IMAGE.append(COR[2][0]) print(COR[2][0]) img = scipy.misc.imread(CONTENT_IMAGE).astype(np.float) IMAGE_WIDTH = img.shape[1] IMAGE_HEIGHT = img.shape[0]