test_set = tools.reduce_data_to_features(data_test, list_features,
                                                 list_features_final)
        dim_features = np.ones(len(list_features_final))

        print('DEBUG  list of final features ', list_features_final)
        plt.plot(train_set[0][:, 3])
        plt.show()

        # Training the model
        model = ModelHMM()
        model.train(train_set, labels_train, list_features_final, dim_features)

        # Testing the model
        pred_labels, proba = model.test_model(test_set)

        #debug sere
        #pred_labels, proba les ecrire dans un fichier

        F1_temp = []
        for i in range(len(labels_test)):
            F1_temp.append(
                tools.compute_F1_score(labels_test[i], pred_labels[i],
                                       list_states[num_track]))

        F1_score.append(np.mean(F1_temp))

        print(F1_score)

    if (flag_save):
        model.save_model(path_model, name_model, "load_handling_" + name_track)
Пример #2
0
        transition_error = []
        short_transition_error = 0

        MCC = 0
        F1_fisher = []
        F1_wrapper = []

        F1_f = []
        F1_w = []

        if (nbr_cross_val == 0):
            model = ModelHMM()
            model.train(data_win, real_labels, best_features, dim_features)

            if (save):
                model.save_model(path_model, name_model, "load_handling")

        for n_subject in range(len(list_participant)):
            data_reduce = deepcopy(data_win)
            labels_reduce = deepcopy(real_labels)

            if (test_generalisation):
                data_gen = []
                labels_gen = []
                seq_subject = 0
                count = []
                for i in range(len(info_participant)):
                    if (info_participant[i] == list_participant[n_subject]):
                        data_gen.append(data_win[i])
                        labels_gen.append(real_labels[i])
        F1_f = []
        F1_w = []

        if (nbr_cross_val == 0):
            data_reduce = []
            for data in data_win:
                df = pd.DataFrame(data)
                df.columns = list_features
                data_reduce.append(df[best_features_wrapper].values)

            data_ref, labels_ref, data_test, labels_test, id_train, id_test = tools.split_data_base2(
                data_reduce, real_labels, ratio)
            model = ModelHMM()
            model.train(data_ref, labels_ref, best_features_wrapper,
                        dim_features)
            model.save_model('model', 'test_video_action', "load_handling")

            info_split = []

            for seq, num_seq in zip(info_sequences,
                                    range(len(info_sequences))):
                if (num_seq in id_train):
                    info_split.append('training')
                else:
                    info_split.append('testing')

            df = pd.DataFrame({'Sequence': info_sequences, 'Base': info_split})

            df.to_csv('model/test_video_action.csv', index=False)

            sys.exit("Shut down")